IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v187y2023ics1364032123006196.html
   My bibliography  Save this article

Solid-state refrigeration of shape memory alloy-based elastocaloric materials: A review focusing on preparation methods, properties and development

Author

Listed:
  • Wang, Shuyao
  • Shi, Yongjun
  • Li, Ying
  • Lin, Hai
  • Fan, Kaijun
  • Teng, Xiangjie

Abstract

Sustainable development represents a vital global strategic goal. In the field of microcooling, green and environmentally friendly solid-state refrigeration technologies show great potential to replace vapor compression refrigeration technologies based on hydrofluorocarbon refrigerants. Shape memory alloys (SMAs) have received increasing interest in recent years as promising elastocaloric materials (eCMs) that induce martensitic phase transformations, which exhibit heat release and absorption upon the application and removal of stress fields. This work reviews the main preparation methods and recent advances in solid-state refrigerants based on SMAs, such as the more studied methods of melting and casting, rolling, and drawing, and the less studied methods of sputtering deposition, and additive manufacturing. The main properties of the eCM-based solid-state refrigerants were analyzed, including the elastocaloric effect (eCE), operating temperature window, stress hysteresis, and cycle stability. Challenges in the commercialization of solid-state refrigeration technology, including SMA-based eCM and their key properties, are discussed. The characteristics and applicability of the different preparation methods are compared, and the advantages and limitations of the methods are summarized. Furthermore, the authors discus the latest research achievements and development directions of SMA-based eCMs to inspire the exploration of new technologies for eCM with excellent eCE and fatigue properties, as these properties are the keys to solid-state cooling technology. Therefore, this comprehensive review is expected to be useful for research on developing eCMs with excellent performance for commercial application in solid-state refrigeration technology.

Suggested Citation

  • Wang, Shuyao & Shi, Yongjun & Li, Ying & Lin, Hai & Fan, Kaijun & Teng, Xiangjie, 2023. "Solid-state refrigeration of shape memory alloy-based elastocaloric materials: A review focusing on preparation methods, properties and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
  • Handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006196
    DOI: 10.1016/j.rser.2023.113762
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123006196
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bing Li & Yukinobu Kawakita & Seiko Ohira-Kawamura & Takeshi Sugahara & Hui Wang & Jingfan Wang & Yanna Chen & Saori I. Kawaguchi & Shogo Kawaguchi & Koji Ohara & Kuo Li & Dehong Yu & Richard Mole & T, 2019. "Colossal barocaloric effects in plastic crystals," Nature, Nature, vol. 567(7749), pages 506-510, March.
    2. Jaka Tušek & Kurt Engelbrecht & Dan Eriksen & Stefano Dall’Olio & Janez Tušek & Nini Pryds, 2016. "A regenerative elastocaloric heat pump," Nature Energy, Nature, vol. 1(10), pages 1-6, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tan, Jianming & Wang, Yao & Xu, Shijie & Liu, Huaican & Qian, Suxin, 2020. "Thermodynamic cycle analysis of heat driven elastocaloric cooling system," Energy, Elsevier, vol. 197(C).
    2. Cai, Yuhao & Qian, Xin & Su, Ruihang & Jia, Xiongjie & Ying, Jinhui & Zhao, Tianshou & Jiang, Haoran, 2024. "Thermo-electrochemical modeling of thermally regenerative flow batteries," Applied Energy, Elsevier, vol. 355(C).
    3. Kristina Navickaitė & Michael Penzel & Christian Bahl & Kurt Engelbrecht & Jaka Tušek & André Martin & Mike Zinecker & Andreas Schubert, 2020. "CFD-Simulation Assisted Design of Elastocaloric Regenerator Geometry," Sustainability, MDPI, vol. 12(21), pages 1-16, October.
    4. Lu, Zhen & Huang, Yuewu & Zhao, Yonggang, 2023. "Elastocaloric cooler for waste heat recovery from perovskite solar cell with electricity and cooling production," Renewable Energy, Elsevier, vol. 215(C).
    5. Johra, Hicham & Filonenko, Konstantin & Heiselberg, Per & Veje, Christian & Dall’Olio, Stefano & Engelbrecht, Kurt & Bahl, Christian, 2019. "Integration of a magnetocaloric heat pump in an energy flexible residential building," Renewable Energy, Elsevier, vol. 136(C), pages 115-126.
    6. Klara Lünser & Eyüp Kavak & Kübra Gürpinar & Baris Emre & Orhan Atakol & Enric Stern-Taulats & Marcel Porta & Antoni Planes & Pol Lloveras & Josep-Lluís Tamarit & Lluís Mañosa, 2024. "Elastocaloric, barocaloric and magnetocaloric effects in spin crossover polymer composite films," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Luo, Dong & Feng, Yinshan & Verma, Parmesh, 2017. "Modeling and analysis of an integrated solid state elastocaloric heat pumping system," Energy, Elsevier, vol. 130(C), pages 500-514.
    8. Zhu, Yuxiang & Zhou, Guoan & Cheng, Siyuan & Sun, Qingping & Yao, Shuhuai, 2023. "A numerical study of elastocaloric regenerators of tubular structures," Applied Energy, Elsevier, vol. 339(C).
    9. Zhang, Jiongjiong & Zhu, Yuxiang & Cheng, Siyuan & Yao, Shuhuai & Sun, Qingping, 2023. "Effect of inactive section on cooling performance of compressive elastocaloric refrigeration prototype," Applied Energy, Elsevier, vol. 351(C).
    10. Qiang Li & Luqi Wei & Ni Zhong & Xiaoming Shi & Donglin Han & Shanyu Zheng & Feihong Du & Junye Shi & Jiangping Chen & Houbing Huang & Chungang Duan & Xiaoshi Qian, 2024. "Low-k nano-dielectrics facilitate electric-field induced phase transition in high-k ferroelectric polymers for sustainable electrocaloric refrigeration," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Han, Yuan & Lai, Cong & Li, Jiarui & Zhang, Zhufeng & Zhang, Houcheng & Hou, Shujin & Wang, Fu & Zhao, Jiapei & Zhang, Chunfei & Miao, He & Yuan, Jinliang, 2022. "Elastocaloric cooler for waste heat recovery from proton exchange membrane fuel cells," Energy, Elsevier, vol. 238(PA).
    12. Jinyoung Seo & Ryan D. McGillicuddy & Adam H. Slavney & Selena Zhang & Rahil Ukani & Andrey A. Yakovenko & Shao-Liang Zheng & Jarad A. Mason, 2022. "Colossal barocaloric effects with ultralow hysteresis in two-dimensional metal–halide perovskites," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    13. Dai, Zhaofeng & She, Xiaohui & Wang, Chen & Ding, Yulong & Li, Yongliang & Zhang, Xiaosong & Zhao, Dongliang, 2024. "Dynamic simulation and performance analysis of a solid-state barocaloric refrigeration system," Energy, Elsevier, vol. 294(C).
    14. Aprea, C. & Greco, A. & Maiorino, A. & Masselli, C., 2018. "Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator," Energy, Elsevier, vol. 165(PA), pages 439-455.
    15. Adriaan van den Bruinhorst & Jocasta Avila & Martin Rosenthal & Ange Pellegrino & Manfred Burghammer & Margarida Costa Gomes, 2023. "Defying decomposition: the curious case of choline chloride," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    16. Yi-Hong Gao & Dong-Hui Wang & Feng-Xia Hu & Qing-Zhen Huang & You-Ting Song & Shuai-Kang Yuan & Zheng-Ying Tian & Bing-Jie Wang & Zi-Bing Yu & Hou-Bo Zhou & Yue Kan & Yuan Lin & Jing Wang & Yun-liang , 2024. "Low pressure reversibly driving colossal barocaloric effect in two-dimensional vdW alkylammonium halides," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    17. Yuanjia Zhang & Xueru Chen & Leilei Cheng & Jing Gu & Yulin Xu, 2023. "Conversion of Polyethylene to High-Yield Fuel Oil at Low Temperatures and Atmospheric Initial Pressure," IJERPH, MDPI, vol. 20(5), pages 1-14, February.
    18. Shixian Zhang & Quanling Yang & Chenjian Li & Yuheng Fu & Huaqing Zhang & Zhiwei Ye & Xingnan Zhou & Qi Li & Tao Wang & Shan Wang & Wenqing Zhang & Chuanxi Xiong & Qing Wang, 2022. "Solid-state cooling by elastocaloric polymer with uniform chain-lengths," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    19. Chunyan Wang & Yi Liu & Wei‐Qiang Chen & Bing Zhu & Shen Qu & Ming Xu, 2021. "Critical review of global plastics stock and flow data," Journal of Industrial Ecology, Yale University, vol. 25(5), pages 1300-1317, October.
    20. Sijia Yao & Pengfei Dang & Yiming Li & Yao Wang & Xi Zhang & Ye Liu & Suxin Qian & Dezhen Xue & Ya-Ling He, 2024. "Efficient roller-driven elastocaloric refrigerator," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:187:y:2023:i:c:s1364032123006196. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.