IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-021-27507-x.html
   My bibliography  Save this article

Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids

Author

Listed:
  • Yantao Li

    (Nanjing University)

  • Qianzhen Shao

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences
    Nankai University)

  • Hengchi He

    (Nanjing University)

  • Chengjian Zhu

    (Nanjing University
    Shanghai Institute of Organic Chemistry)

  • Xiao-Song Xue

    (University of Chinese Academy of Sciences, Chinese Academy of Sciences
    Nankai University)

  • Jin Xie

    (Nanjing University
    Hunan University)

Abstract

The synthesis of all-carbon tetrasubstituted olefins under mild reaction conditions is challenging because of the inevitable issues including significant steric hindrance and the uncontrolled Z/E stereoselectivity. In this paper, we report the synthesis of all-carbon tetrasubstituted alkenes from readily available carboxylic acids and alkenyl triflates with the synergistic catalysis of cyclo-octa-1,5-diene(tetramethyl-1,4-benzoquinone)nickel and visible light under an air atmosphere, thus avoiding the need for a glovebox or a Schlenk line. A wide range of aromatic carboxylic acids and cyclic and acyclic alkenyl triflates undergo the C-C coupling process smoothly, forming structurally diverse alkenes stereospecifically in moderate to good yields. The practicality of the method is further illustrated by the late-stage modification of complex molecules, the one pot synthesis and gram-scale applications. This is an important step towards the valuable utilization of carboxylic acids, and it also simplifies the experimental operation of metallophotoredox catalysis with moisture sensitive nickel(0) catalysis.

Suggested Citation

  • Yantao Li & Qianzhen Shao & Hengchi He & Chengjian Zhu & Xiao-Song Xue & Jin Xie, 2022. "Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27507-x
    DOI: 10.1038/s41467-021-27507-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27507-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27507-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yun Zhang & Xi-Chao Wang & Cheng-Wei Ju & Dongbing Zhao, 2021. "Bis-silylation of internal alkynes enabled by Ni(0) catalysis," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Jack A. Terrett & James D. Cuthbertson & Valerie W. Shurtleff & David W. C. MacMillan, 2015. "Switching on elusive organometallic mechanisms with photoredox catalysis," Nature, Nature, vol. 524(7565), pages 330-334, August.
    3. Muliang Zhang & Jin Xie & Chengjian Zhu, 2018. "A general deoxygenation approach for synthesis of ketones from aromatic carboxylic acids and alkenes," Nature Communications, Nature, vol. 9(1), pages 1-10, December.
    4. Rehanguli Ruzi & Kai Liu & Chengjian Zhu & Jin Xie, 2020. "Upgrading ketone synthesis direct from carboxylic acids and organohalides," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    5. Xiaokai Cheng & Huangzhe Lu & Zhan Lu, 2019. "Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Runze Luan & Ping Lin & Kun Li & Yu Du & Weiping Su, 2024. "Remote-carbonyl-directed sequential Heck/isomerization/C(sp2)–H arylation of alkenes for modular synthesis of stereodefined tetrasubstituted olefins," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Nian Li & Jinhang Li & Mingzhe Qin & Jiajun Li & Jie Han & Chengjian Zhu & Weipeng Li & Jin Xie, 2022. "Highly selective single and multiple deuteration of unactivated C(sp3)-H bonds," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shuaishuai Wang & Tingrui Li & Chengyihan Gu & Jie Han & Chuan-Gang Zhao & Chengjian Zhu & Hairen Tan & Jin Xie, 2022. "Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    2. Nian Li & Jinhang Li & Mingzhe Qin & Jiajun Li & Jie Han & Chengjian Zhu & Weipeng Li & Jin Xie, 2022. "Highly selective single and multiple deuteration of unactivated C(sp3)-H bonds," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Yun-Zhao Wang & Zhen-Hua Wang & Inbal L. Eshel & Bing Sun & Dong Liu & Yu-Cheng Gu & Anat Milo & Tian-Sheng Mei, 2023. "Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Hanah Na & Liviu M. Mirica, 2022. "Deciphering the mechanism of the Ni-photocatalyzed C‒O cross-coupling reaction using a tridentate pyridinophane ligand," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    5. Xiaomin Shu & De Zhong & Qian Huang & Leitao Huan & Haohua Huo, 2023. "Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    6. Dong Liu & Zhao-Ran Liu & Zhen-Hua Wang & Cong Ma & Simon Herbert & Hartmut Schirok & Tian-Sheng Mei, 2022. "Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Li-Li Zhang & Yu-Zhong Gao & Sheng-Han Cai & Hui Yu & Shou-Jie Shen & Qian Ping & Ze-Peng Yang, 2024. "Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-021-27507-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.