IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-52702-x.html
   My bibliography  Save this article

Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis

Author

Listed:
  • Xinlong Ma

    (Deep Space Exploration Laboratory
    University of Science and Technology of China)

  • Haibin Yin

    (University of Science and Technology of China)

  • Zhengtian Pu

    (University of Science and Technology of China)

  • Xinyan Zhang

    (University of Science and Technology of China)

  • Sunpei Hu

    (University of Science and Technology of China)

  • Tao Zhou

    (University of Science and Technology of China)

  • Weizhe Gao

    (University of Toyama)

  • Laihao Luo

    (University of Science and Technology of China)

  • Hongliang Li

    (University of Science and Technology of China
    University of Science and Technology of China)

  • Jie Zeng

    (Deep Space Exploration Laboratory
    University of Science and Technology of China
    Anhui University of Technology)

Abstract

Acetone serves as an important solvent and building block for the chemical industry, but the current industrial synthesis of acetone is generally accompanied by the energy-intensive and costly cumene process used for phenol production. Here we propose a sustainable route for acetone synthesis via propane wet reforming at a moderate temperature of 350 oC with the use of platinum-tin nanoparticles supported on γ-aluminium oxide (PtSn/γ-Al2O3) as catalyst. We achieve an acetone productivity of 858.4 μmol/g with a selectivity of 57.8% among all carbon-based products and 99.3% among all liquid products. Detailed spectroscopic and controlled experiments reveal that the acetone is formed through a tandem catalytic process involving propene and isopropanol as intermediates. We also demonstrate facile ketone synthesis via wet reforming with the use of different alkanes (e.g., n-butane, n-pentane, n-hexane, n-heptane, and n-octane) as substrates, proving the wide applicability of this strategy.

Suggested Citation

  • Xinlong Ma & Haibin Yin & Zhengtian Pu & Xinyan Zhang & Sunpei Hu & Tao Zhou & Weizhe Gao & Laihao Luo & Hongliang Li & Jie Zeng, 2024. "Propane wet reforming over PtSn nanoparticles on γ-Al2O3 for acetone synthesis," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52702-x
    DOI: 10.1038/s41467-024-52702-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-52702-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-52702-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dan Zhao & Xinxin Tian & Dmitry E. Doronkin & Shanlei Han & Vita A. Kondratenko & Jan-Dierk Grunwaldt & Anna Perechodjuk & Thanh Huyen Vuong & Jabor Rabeah & Reinhard Eckelt & Uwe Rodemerck & David Li, 2021. "In situ formation of ZnOx species for efficient propane dehydrogenation," Nature, Nature, vol. 599(7884), pages 234-238, November.
    2. Yuki Nakaya & Jun Hirayama & Seiji Yamazoe & Ken-ichi Shimizu & Shinya Furukawa, 2020. "Single-atom Pt in intermetallics as an ultrastable and selective catalyst for propane dehydrogenation," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Xiaofeng Gao & Ling Zhu & Feng Yang & Lei Zhang & Wenhao Xu & Xian Zhou & Yongkang Huang & Houhong Song & Lili Lin & Xiaodong Wen & Ding Ma & Siyu Yao, 2023. "Subsurface nickel boosts the low-temperature performance of a boron oxide overlayer in propane oxidative dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    4. Elaine Gomez & Shyam Kattel & Binhang Yan & Siyu Yao & Ping Liu & Jingguang G. Chen, 2018. "Combining CO2 reduction with propane oxidative dehydrogenation over bimetallic catalysts," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    5. Rehanguli Ruzi & Kai Liu & Chengjian Zhu & Jin Xie, 2020. "Upgrading ketone synthesis direct from carboxylic acids and organohalides," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pingping Wei & Sai Chen & Ran Luo & Guodong Sun & Kexin Wu & Donglong Fu & Zhi-Jian Zhao & Chunlei Pei & Ning Yan & Jinlong Gong, 2024. "Stable and homogeneous intermetallic alloys by atomic gas-migration for propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    2. Chunsong Li & Haochen Zhang & Wenxuan Liu & Lin Sheng & Mu-Jeng Cheng & Bingjun Xu & Guangsheng Luo & Qi Lu, 2024. "Efficient conversion of propane in a microchannel reactor at ambient conditions," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    3. Tian-Wei Song & Cong Xu & Zhu-Tao Sheng & Hui-Kun Yan & Lei Tong & Jun Liu & Wei-Jie Zeng & Lu-Jie Zuo & Peng Yin & Ming Zuo & Sheng-Qi Chu & Ping Chen & Hai-Wei Liang, 2022. "Small molecule-assisted synthesis of carbon supported platinum intermetallic fuel cell catalysts," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    4. Changhai Lu & Daotong You & Juan Li & Long Wen & Baojun Li & Tuan Guo & Zaizhu Lou, 2022. "Full-spectrum nonmetallic plasmonic carriers for efficient isopropanol dehydration," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    5. Feilong Xing & Jiamin Ma & Ken-ichi Shimizu & Shinya Furukawa, 2022. "High-entropy intermetallics on ceria as efficient catalysts for the oxidative dehydrogenation of propane using CO2," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    6. Yantao Li & Qianzhen Shao & Hengchi He & Chengjian Zhu & Xiao-Song Xue & Jin Xie, 2022. "Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    7. Jalid, Fatima & Khan, Tuhin Suvra & Haider, M. Ali, 2021. "Exploring bimetallic alloy catalysts of Co, Pd and Cu for CO2 reduction combined with ethane dehydrogenation," Applied Energy, Elsevier, vol. 299(C).
    8. Shuaishuai Wang & Tingrui Li & Chengyihan Gu & Jie Han & Chuan-Gang Zhao & Chengjian Zhu & Hairen Tan & Jin Xie, 2022. "Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    9. Yong Yuan & Erwei Huang & Sooyeon Hwang & Ping Liu & Jingguang G. Chen, 2024. "Confining platinum clusters in indium-modified ZSM-5 zeolite to promote propane dehydrogenation," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Hao Tian & Wenying Li & Linhai He & Yunzhu Zhong & Shutao Xu & Hai Xiao & Bingjun Xu, 2023. "Rationalizing kinetic behaviors of isolated boron sites catalyzed oxidative dehydrogenation of propane," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Nian Li & Jinhang Li & Mingzhe Qin & Jiajun Li & Jie Han & Chengjian Zhu & Weipeng Li & Jin Xie, 2022. "Highly selective single and multiple deuteration of unactivated C(sp3)-H bonds," Nature Communications, Nature, vol. 13(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-52702-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.