IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-35073-z.html
   My bibliography  Save this article

Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides

Author

Listed:
  • Dong Liu

    (Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS)

  • Zhao-Ran Liu

    (Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS)

  • Zhen-Hua Wang

    (Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS)

  • Cong Ma

    (Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS)

  • Simon Herbert

    (Bayer AG)

  • Hartmut Schirok

    (Bayer AG)

  • Tian-Sheng Mei

    (Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, CAS)

Abstract

Electrochemical asymmetric catalysis has emerged as a sustainable and promising approach to the production of chiral compounds and the utilization of both the anode and cathode as working electrodes would provide a unique approach for organic synthesis. However, precise matching of the rate and electric potential of anodic oxidation and cathodic reduction make such idealized electrolysis difficult to achieve. Herein, asymmetric cross-coupling between α-chloroesters and aryl bromides is probed as a model reaction, wherein alkyl radicals are generated from the α-chloroesters through a sequential oxidative electron transfer process at the anode, while the nickel catalyst is reduced to a lower oxidation state at the cathode. Radical clock studies, cyclic voltammetry analysis, and electron paramagnetic resonance experiments support the synergistic involvement of anodic and cathodic redox events. This electrolytic method provides an alternative avenue for asymmetric catalysis that could find significant utility in organic synthesis.

Suggested Citation

  • Dong Liu & Zhao-Ran Liu & Zhen-Hua Wang & Cong Ma & Simon Herbert & Hartmut Schirok & Tian-Sheng Mei, 2022. "Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35073-z
    DOI: 10.1038/s41467-022-35073-z
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-35073-z
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-35073-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Philipp Schäfer & Thomas Palacin & Mireia Sidera & Stephen P. Fletcher, 2017. "Asymmetric Suzuki-Miyaura coupling of heterocycles via Rhodium-catalysed allylic arylation of racemates," Nature Communications, Nature, vol. 8(1), pages 1-12, August.
    2. Xiaokai Cheng & Huangzhe Lu & Zhan Lu, 2019. "Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    3. Yuli He & Huayue Song & Jian Chen & Shaolin Zhu, 2021. "NiH-catalyzed asymmetric hydroarylation of N-acyl enamines to chiral benzylamines," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Long Zou & Xinyue Zheng & XueZheng Yi & Qingquan Lu, 2024. "Asymmetric paired oxidative and reductive catalysis enables enantioselective alkylarylation of olefins with C(sp3)−H bonds," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    2. Yun-Zhao Wang & Zhen-Hua Wang & Inbal L. Eshel & Bing Sun & Dong Liu & Yu-Cheng Gu & Anat Milo & Tian-Sheng Mei, 2023. "Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yun-Zhao Wang & Zhen-Hua Wang & Inbal L. Eshel & Bing Sun & Dong Liu & Yu-Cheng Gu & Anat Milo & Tian-Sheng Mei, 2023. "Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    2. Qian Gao & Wei-Cheng Xu & Xuan Nie & Kang-Jie Bian & Hong-Rui Yuan & Wen Zhang & Bing-Bing Wu & Xi-Sheng Wang, 2024. "Regio‐ and enantioselective nickel-alkyl catalyzed hydroalkylation of alkynes," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    3. Xiaomin Shu & De Zhong & Qian Huang & Leitao Huan & Haohua Huo, 2023. "Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Liang Jin & Ya Li & Yihui Mao & Xiao-Bao He & Zhan Lu & Qi Zhang & Bing-Feng Shi, 2024. "Chiral dinitrogen ligand enabled asymmetric Pd/norbornene cooperative catalysis toward the assembly of C–N axially chiral scaffolds," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    5. Yantao Li & Qianzhen Shao & Hengchi He & Chengjian Zhu & Xiao-Song Xue & Jin Xie, 2022. "Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    6. Li-Li Zhang & Yu-Zhong Gao & Sheng-Han Cai & Hui Yu & Shou-Jie Shen & Qian Ping & Ze-Peng Yang, 2024. "Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides," Nature Communications, Nature, vol. 15(1), pages 1-11, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-35073-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.