IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v11y2020i1d10.1038_s41467-020-17224-2.html
   My bibliography  Save this article

Upgrading ketone synthesis direct from carboxylic acids and organohalides

Author

Listed:
  • Rehanguli Ruzi

    (Nanjing University)

  • Kai Liu

    (Nanjing University)

  • Chengjian Zhu

    (Nanjing University
    Zhengzhou University)

  • Jin Xie

    (Nanjing University)

Abstract

The ketone functional group has a unique reactivity in organic chemistry and is associated with a number of useful reactions. Catalytic methods for ketone synthesis are continually being developed. Here, we report a photoredox, nickel and phosphoranyl radical synergistic cross-electrophile coupling of commercially available chemicals, aromatic acids and aryl/alkyl bromides. This allows for concise synthesis of highly functionalized ketones directly, without the preparation of activated carbonyl intermediates or organometallic compounds, and thus complements the conventional Weinreb ketone synthesis. Use of the appropriate photocatalyst, ligand amount and solvents can match the reaction rate required by any simple catalytic cycle. The practicality and synthetic robustness of the reaction are illustrated by the facile synthesis of complex ketones from readily available feedstock chemicals.

Suggested Citation

  • Rehanguli Ruzi & Kai Liu & Chengjian Zhu & Jin Xie, 2020. "Upgrading ketone synthesis direct from carboxylic acids and organohalides," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17224-2
    DOI: 10.1038/s41467-020-17224-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-020-17224-2
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-020-17224-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Nian Li & Jinhang Li & Mingzhe Qin & Jiajun Li & Jie Han & Chengjian Zhu & Weipeng Li & Jin Xie, 2022. "Highly selective single and multiple deuteration of unactivated C(sp3)-H bonds," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Yantao Li & Qianzhen Shao & Hengchi He & Chengjian Zhu & Xiao-Song Xue & Jin Xie, 2022. "Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Shuaishuai Wang & Tingrui Li & Chengyihan Gu & Jie Han & Chuan-Gang Zhao & Chengjian Zhu & Hairen Tan & Jin Xie, 2022. "Decarboxylative tandem C-N coupling with nitroarenes via SH2 mechanism," Nature Communications, Nature, vol. 13(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:11:y:2020:i:1:d:10.1038_s41467-020-17224-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.