IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37965-0.html
   My bibliography  Save this article

Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides

Author

Listed:
  • Yun-Zhao Wang

    (University of Chinese Academy of Sciences, CAS)

  • Zhen-Hua Wang

    (University of Chinese Academy of Sciences, CAS)

  • Inbal L. Eshel

    (Ben-Gurion University of the Negev)

  • Bing Sun

    (University of Chinese Academy of Sciences, CAS)

  • Dong Liu

    (University of Chinese Academy of Sciences, CAS)

  • Yu-Cheng Gu

    (Syngenta, Jealott’s Hill International Research Centre)

  • Anat Milo

    (Ben-Gurion University of the Negev)

  • Tian-Sheng Mei

    (University of Chinese Academy of Sciences, CAS)

Abstract

Here, we report an asymmetric electrochemical organonickel-catalyzed reductive cross-coupling of aryl aziridines with aryl iodides in an undivided cell, affording β-phenethylamines in good to excellent enantioselectivity with broad functional group tolerance. The combination of cyclic voltammetry analysis of the catalyst reduction potential as well as an electrode potential study provides a convenient route for reaction optimization. Overall, the high efficiency of this method is credited to the electroreduction-mediated turnover of the nickel catalyst instead of a metal reductant-mediated turnover. Mechanistic studies suggest a radical pathway is involved in the ring opening of aziridines. The statistical analysis serves to compare the different design requirements for photochemically and electrochemically mediated reactions under this type of mechanistic manifold.

Suggested Citation

  • Yun-Zhao Wang & Zhen-Hua Wang & Inbal L. Eshel & Bing Sun & Dong Liu & Yu-Cheng Gu & Anat Milo & Tian-Sheng Mei, 2023. "Nickel/biimidazole-catalyzed electrochemical enantioselective reductive cross-coupling of aryl aziridines with aryl iodides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37965-0
    DOI: 10.1038/s41467-023-37965-0
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37965-0
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37965-0?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Dong Liu & Zhao-Ran Liu & Zhen-Hua Wang & Cong Ma & Simon Herbert & Hartmut Schirok & Tian-Sheng Mei, 2022. "Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    2. Xiaokai Cheng & Huangzhe Lu & Zhan Lu, 2019. "Enantioselective benzylic C–H arylation via photoredox and nickel dual catalysis," Nature Communications, Nature, vol. 10(1), pages 1-7, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yantao Li & Qianzhen Shao & Hengchi He & Chengjian Zhu & Xiao-Song Xue & Jin Xie, 2022. "Highly selective synthesis of all-carbon tetrasubstituted alkenes by deoxygenative alkenylation of carboxylic acids," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    2. Dong Liu & Zhao-Ran Liu & Zhen-Hua Wang & Cong Ma & Simon Herbert & Hartmut Schirok & Tian-Sheng Mei, 2022. "Paired electrolysis-enabled nickel-catalyzed enantioselective reductive cross-coupling between α-chloroesters and aryl bromides," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    3. Li-Li Zhang & Yu-Zhong Gao & Sheng-Han Cai & Hui Yu & Shou-Jie Shen & Qian Ping & Ze-Peng Yang, 2024. "Ni-catalyzed enantioconvergent deoxygenative reductive cross-coupling of unactivated alkyl alcohols and aryl bromides," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    4. Xiaomin Shu & De Zhong & Qian Huang & Leitao Huan & Haohua Huo, 2023. "Site- and enantioselective cross-coupling of saturated N-heterocycles with carboxylic acids by cooperative Ni/photoredox catalysis," Nature Communications, Nature, vol. 14(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37965-0. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.