IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-38912-9.html
   My bibliography  Save this article

Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division

Author

Listed:
  • Emilie Montembault

    (University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit
    CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns)

  • Irène Deduyer

    (University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit
    CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns)

  • Marie-Charlotte Claverie

    (University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit
    CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns)

  • Lou Bouit

    (University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit
    University of Bordeaux)

  • Nicolas J. Tourasse

    (University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit)

  • Denis Dupuy

    (University of Bordeaux, INSERM, U1212, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit)

  • Derek McCusker

    (University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit
    CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns)

  • Anne Royou

    (University of Bordeaux, Institut Européen de Chimie et Biologie, 2 rue Robert Escarpit
    CNRS, UMR5095, University of Bordeaux, Institut de Biologie et Génétique Cellulaire, 1 rue Camille Saint-Saëns)

Abstract

Cytokinesis partitions cellular content between daughter cells. It relies on the formation of an acto-myosin contractile ring, whose constriction induces the ingression of the cleavage furrow between the segregated chromatids. Rho1 GTPase and its RhoGEF (Pbl) are essential for this process. However, how Rho1 is regulated to sustain furrow ingression while maintaining correct furrow position remains poorly defined. Here, we show that during asymmetric division of Drosophila neuroblasts, Rho1 is controlled by two Pbl isoforms with distinct localisation. Spindle midzone- and furrow-enriched Pbl-A focuses Rho1 at the furrow to sustain efficient ingression, while Pbl-B pan-plasma membrane localization promotes the broadening of Rho1 activity and the subsequent enrichment of myosin on the entire cortex. This enlarged zone of Rho1 activity is critical to adjust furrow position, thereby preserving correct daughter cell size asymmetry. Our work highlights how the use of isoforms with distinct localisation makes an essential process more robust.

Suggested Citation

  • Emilie Montembault & Irène Deduyer & Marie-Charlotte Claverie & Lou Bouit & Nicolas J. Tourasse & Denis Dupuy & Derek McCusker & Anne Royou, 2023. "Two RhoGEF isoforms with distinct localisation control furrow position during asymmetric cell division," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38912-9
    DOI: 10.1038/s41467-023-38912-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-38912-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-38912-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Michaela Roth & Chantal Roubinet & Niklas Iffländer & Alexia Ferrand & Clemens Cabernard, 2015. "Asymmetrically dividing Drosophila neuroblasts utilize two spatially and temporally independent cytokinesis pathways," Nature Communications, Nature, vol. 6(1), pages 1-14, May.
    2. Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Jakub Sedzinski & Maté Biro & Annelie Oswald & Jean-Yves Tinevez & Guillaume Salbreux & Ewa Paluch, 2011. "Polar actomyosin contractility destabilizes the position of the cytokinetic furrow," Nature, Nature, vol. 476(7361), pages 462-466, August.
    4. Andrew W. Senior & Richard Evans & John Jumper & James Kirkpatrick & Laurent Sifre & Tim Green & Chongli Qin & Augustin Žídek & Alexander W. R. Nelson & Alex Bridgland & Hugo Penedones & Stig Petersen, 2020. "Improved protein structure prediction using potentials from deep learning," Nature, Nature, vol. 577(7792), pages 706-710, January.
    5. Clemens Cabernard & Kenneth E. Prehoda & Chris Q. Doe, 2010. "A spindle-independent cleavage furrow positioning pathway," Nature, Nature, vol. 467(7311), pages 91-94, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lauren L. Porter & Allen K. Kim & Swechha Rimal & Loren L. Looger & Ananya Majumdar & Brett D. Mensh & Mary R. Starich & Marie-Paule Strub, 2022. "Many dissimilar NusG protein domains switch between α-helix and β-sheet folds," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Zachary C. Drake & Justin T. Seffernick & Steffen Lindert, 2022. "Protein complex prediction using Rosetta, AlphaFold, and mass spectrometry covalent labeling," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    4. Nicolae Sapoval & Amirali Aghazadeh & Michael G. Nute & Dinler A. Antunes & Advait Balaji & Richard Baraniuk & C. J. Barberan & Ruth Dannenfelser & Chen Dun & Mohammadamin Edrisi & R. A. Leo Elworth &, 2022. "Current progress and open challenges for applying deep learning across the biosciences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2022. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Papers 2201.07168, arXiv.org.
    6. Krzysztof Rusek & Agnieszka Kleszcz & Albert Cabellos-Aparicio, 2023. "Bayesian inference of spatial and temporal relations in AI patents for EU countries," Scientometrics, Springer;Akadémiai Kiadó, vol. 128(6), pages 3313-3335, June.
    7. Benoit Stijlemans & Patrick Baetselier & Inge Molle & Laurence Lecordier & Erika Hendrickx & Ema Romão & Cécile Vincke & Wendy Baetens & Steve Schoonooghe & Gholamreza Hassanzadeh-Ghassabeh & Hannelie, 2024. "Q586B2 is a crucial virulence factor during the early stages of Trypanosoma brucei infection that is conserved amongst trypanosomatids," Nature Communications, Nature, vol. 15(1), pages 1-18, December.
    8. Niklas W. A. Gebauer & Michael Gastegger & Stefaan S. P. Hessmann & Klaus-Robert Müller & Kristof T. Schütt, 2022. "Inverse design of 3d molecular structures with conditional generative neural networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    9. Lisa Van den Broeck & Dinesh Kiran Bhosale & Kuncheng Song & Cássio Flavio Fonseca de Lima & Michael Ashley & Tingting Zhu & Shanshuo Zhu & Brigitte Van De Cotte & Pia Neyt & Anna C. Ortiz & Tiffany R, 2023. "Functional annotation of proteins for signaling network inference in non-model species," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    10. Januschowski, Tim & Wang, Yuyang & Torkkola, Kari & Erkkilä, Timo & Hasson, Hilaf & Gasthaus, Jan, 2022. "Forecasting with trees," International Journal of Forecasting, Elsevier, vol. 38(4), pages 1473-1481.
    11. Hajkowicz, Stefan & Naughtin, Claire & Sanderson, Conrad & Schleiger, Emma & Karimi, Sarvnaz & Bratanova, Alexandra & Bednarz, Tomasz, 2022. "Artificial intelligence for science – adoption trends and future development pathways," MPRA Paper 115464, University Library of Munich, Germany.
    12. Qiufen Chen & Yuanzhao Guo & Jiuhong Jiang & Jing Qu & Li Zhang & Han Wang, 2023. "The Relative Distance Prediction of Transmembrane Protein Surface Residue Based on Improved Residual Networks," Mathematics, MDPI, vol. 11(3), pages 1-16, January.
    13. Agnese I. Curatolo & Ofer Kimchi & Carl P. Goodrich & Ryan K. Krueger & Michael P. Brenner, 2023. "A computational toolbox for the assembly yield of complex and heterogeneous structures," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    14. Tao Ni & Qiuyao Jiang & Pei Cing Ng & Juan Shen & Hao Dou & Yanan Zhu & Julika Radecke & Gregory F. Dykes & Fang Huang & Lu-Ning Liu & Peijun Zhang, 2023. "Intrinsically disordered CsoS2 acts as a general molecular thread for α-carboxysome shell assembly," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    15. Noelia Ferruz & Steffen Schmidt & Birte Höcker, 2022. "ProtGPT2 is a deep unsupervised language model for protein design," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    16. Chengwei Zeng & Yiren Jian & Soroush Vosoughi & Chen Zeng & Yunjie Zhao, 2023. "Evaluating native-like structures of RNA-protein complexes through the deep learning method," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    17. Francesca Mateo & Zhengcheng He & Lin Mei & Gorka Ruiz de Garibay & Carmen Herranz & Nadia García & Amanda Lorentzian & Alexandra Baiges & Eline Blommaert & Antonio Gómez & Oriol Mirallas & Anna Garri, 2022. "Modification of BRCA1-associated breast cancer risk by HMMR overexpression," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    18. Simone Vannuccini & Ekaterina Prytkova, 2021. "Artificial Intelligence’s New Clothes? From General Purpose Technology to Large Technical System," SPRU Working Paper Series 2021-02, SPRU - Science Policy Research Unit, University of Sussex Business School.
    19. Aaron Gupta & Kevin S. Kao & Rachel Yamin & Deena A. Oren & Yehuda Goldgur & Jonathan Du & Pete Lollar & Eric J. Sundberg & Jeffrey V. Ravetch, 2023. "Mechanism of glycoform specificity and in vivo protection by an anti-afucosylated IgG nanobody," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Md Tauhidul Islam & Zixia Zhou & Hongyi Ren & Masoud Badiei Khuzani & Daniel Kapp & James Zou & Lu Tian & Joseph C. Liao & Lei Xing, 2023. "Revealing hidden patterns in deep neural network feature space continuum via manifold learning," Nature Communications, Nature, vol. 14(1), pages 1-20, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-38912-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.