IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v14y2023i1d10.1038_s41467-023-37752-x.html
   My bibliography  Save this article

Trumpet is an operating system for simple and robust cell-free biocomputing

Author

Listed:
  • Judee A. Sharon

    (University of Minnesota, Twin Cities)

  • Chelsea Dasrath

    (University of Minnesota, Twin Cities)

  • Aiden Fujiwara

    (University of Minnesota, Twin Cities)

  • Alessandro Snyder

    (University of Minnesota, Twin Cities)

  • Mace Blank

    (University of Minnesota, Twin Cities)

  • Sam O’Brien

    (University of Minnesota, Twin Cities)

  • Lauren M. Aufdembrink

    (University of Minnesota, Twin Cities)

  • Aaron E. Engelhart

    (University of Minnesota, Twin Cities)

  • Katarzyna P. Adamala

    (University of Minnesota, Twin Cities)

Abstract

Biological computation is becoming a viable and fast-growing alternative to traditional electronic computing. Here we present a biocomputing technology called Trumpet: Transcriptional RNA Universal Multi-Purpose GatE PlaTform. Trumpet combines the simplicity and robustness of the simplest in vitro biocomputing methods, adding signal amplification and programmability, while avoiding common shortcomings of live cell-based biocomputing solutions. We have demonstrated the use of Trumpet to build all universal Boolean logic gates. We have also built a web-based platform for designing Trumpet gates and created a primitive processor by networking several gates as a proof-of-principle for future development. The Trumpet offers a change of paradigm in biocomputing, providing an efficient and easily programmable biological logic gate operating system.

Suggested Citation

  • Judee A. Sharon & Chelsea Dasrath & Aiden Fujiwara & Alessandro Snyder & Mace Blank & Sam O’Brien & Lauren M. Aufdembrink & Aaron E. Engelhart & Katarzyna P. Adamala, 2023. "Trumpet is an operating system for simple and robust cell-free biocomputing," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37752-x
    DOI: 10.1038/s41467-023-37752-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-023-37752-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-023-37752-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Yeqing Zong & Haoqian M. Zhang & Cheng Lyu & Xiangyu Ji & Junran Hou & Xian Guo & Qi Ouyang & Chunbo Lou, 2017. "Insulated transcriptional elements enable precise design of genetic circuits," Nature Communications, Nature, vol. 8(1), pages 1-13, December.
    2. Tae Seok Moon & Chunbo Lou & Alvin Tamsir & Brynne C. Stanton & Christopher A. Voigt, 2012. "Genetic programs constructed from layered logic gates in single cells," Nature, Nature, vol. 491(7423), pages 249-253, November.
    3. Vittorio Bartoli & Grace A. Meaker & Mario di Bernardo & Thomas E. Gorochowski, 2020. "Tunable genetic devices through simultaneous control of transcription and translation," Nature Communications, Nature, vol. 11(1), pages 1-11, December.
    4. Anselm Levskaya & Orion D. Weiner & Wendell A. Lim & Christopher A. Voigt, 2009. "Spatiotemporal control of cell signalling using a light-switchable protein interaction," Nature, Nature, vol. 461(7266), pages 997-1001, October.
    5. Lewis Grozinger & Martyn Amos & Thomas E. Gorochowski & Pablo Carbonell & Diego A. Oyarzún & Ruud Stoof & Harold Fellermann & Paolo Zuliani & Huseyin Tas & Angel Goñi-Moreno, 2019. "Pathways to cellular supremacy in biocomputing," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuanli Gao & Lei Wang & Baojun Wang, 2023. "Customizing cellular signal processing by synthetic multi-level regulatory circuits," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    2. Kei Yamamoto & Haruko Miura & Motohiko Ishida & Yusuke Mii & Noriyuki Kinoshita & Shinji Takada & Naoto Ueno & Satoshi Sawai & Yohei Kondo & Kazuhiro Aoki, 2021. "Optogenetic relaxation of actomyosin contractility uncovers mechanistic roles of cortical tension during cytokinesis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Jie Li & Haonan Zhang & Dongyu Li & Ya-Jun Liu & Edward A. Bayer & Qiu Cui & Yingang Feng & Ping Zhu, 2023. "Structure of the transcription open complex of distinct σI factors," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    4. Takayuki Yasunaga & Johannes Wiegel & Max D. Bergen & Martin Helmstädter & Daniel Epting & Andrea Paolini & Özgün Çiçek & Gerald Radziwill & Christina Engel & Thomas Brox & Olaf Ronneberger & Peter Wa, 2022. "Microridge-like structures anchor motile cilia," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    5. Zomorrodi, Ali R. & Maranas, Costas D., 2014. "Coarse-grained optimization-driven design and piecewise linear modeling of synthetic genetic circuits," European Journal of Operational Research, Elsevier, vol. 237(2), pages 665-676.
    6. Singh, Vijai & Chaudhary, Dharmendra Kumar & Mani, Indra & Dhar, Pawan Kumar, 2016. "Recent advances and challenges of the use of cyanobacteria towards the production of biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1-10.
    7. Kanakov, Oleg & Chen, Shangbin & Zaikin, Alexey, 2024. "Learning by selective plasmid loss for intracellular synthetic classifiers," Chaos, Solitons & Fractals, Elsevier, vol. 179(C).
    8. John P. Marken & Richard M. Murray, 2023. "Addressable and adaptable intercellular communication via DNA messaging," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    9. Javier Macia & Romilde Manzoni & Núria Conde & Arturo Urrios & Eulàlia de Nadal & Ricard Solé & Francesc Posas, 2016. "Implementation of Complex Biological Logic Circuits Using Spatially Distributed Multicellular Consortia," PLOS Computational Biology, Public Library of Science, vol. 12(2), pages 1-24, February.
    10. Willow Coyote-Maestas & David Nedrud & Antonio Suma & Yungui He & Kenneth A. Matreyek & Douglas M. Fowler & Vincenzo Carnevale & Chad L. Myers & Daniel Schmidt, 2021. "Probing ion channel functional architecture and domain recombination compatibility by massively parallel domain insertion profiling," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Ahmed A. Agiza & Kady Oakley & Jacob K. Rosenstein & Brenda M. Rubenstein & Eunsuk Kim & Marc Riedel & Sherief Reda, 2023. "Digital circuits and neural networks based on acid-base chemistry implemented by robotic fluid handling," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    12. Bob Sluijs & Roel J. M. Maas & Ardjan J. Linden & Tom F. A. Greef & Wilhelm T. S. Huck, 2022. "A microfluidic optimal experimental design platform for forward design of cell-free genetic networks," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    13. Chenrui Qin & Yanhui Xiang & Jie Liu & Ruilin Zhang & Ziming Liu & Tingting Li & Zhi Sun & Xiaoyi Ouyang & Yeqing Zong & Haoqian M. Zhang & Qi Ouyang & Long Qian & Chunbo Lou, 2023. "Precise programming of multigene expression stoichiometry in mammalian cells by a modular and programmable transcriptional system," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    14. Yang Gao & Yuchen Zhou & Xudong Ji & Austin J. Graham & Christopher M. Dundas & Ismar E. Miniel Mahfoud & Bailey M. Tibbett & Benjamin Tan & Gina Partipilo & Ananth Dodabalapur & Jonathan Rivnay & Ben, 2024. "A hybrid transistor with transcriptionally controlled computation and plasticity," Nature Communications, Nature, vol. 15(1), pages 1-13, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:14:y:2023:i:1:d:10.1038_s41467-023-37752-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.