IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27213-8.html
   My bibliography  Save this article

Interlayer exciton mediated second harmonic generation in bilayer MoS2

Author

Listed:
  • Shivangi Shree

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO
    University of Washington)

  • Delphine Lagarde

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

  • Laurent Lombez

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

  • Cedric Robert

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

  • Andrea Balocchi

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

  • Kenji Watanabe

    (Research Center for Functional Materials, National Institute for Materials Science)

  • Takashi Taniguchi

    (International Center for Materials Nanoarchitectonics, National Institute for Materials Science)

  • Xavier Marie

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

  • Iann C. Gerber

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

  • Mikhail M. Glazov

    (Ioffe Institute)

  • Leonid E. Golub

    (Ioffe Institute)

  • Bernhard Urbaszek

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

  • Ioannis Paradisanos

    (Université de Toulouse, INSA-CNRS-UPS, LPCNO)

Abstract

Second-harmonic generation (SHG) is a non-linear optical process, where two photons coherently combine into one photon of twice their energy. Efficient SHG occurs for crystals with broken inversion symmetry, such as transition metal dichalcogenide monolayers. Here we show tuning of non-linear optical processes in an inversion symmetric crystal. This tunability is based on the unique properties of bilayer MoS2, that shows strong optical oscillator strength for the intra- but also interlayer exciton resonances. As we tune the SHG signal onto these resonances by varying the laser energy, the SHG amplitude is enhanced by several orders of magnitude. In the resonant case the bilayer SHG signal reaches amplitudes comparable to the off-resonant signal from a monolayer. In applied electric fields the interlayer exciton energies can be tuned due to their in-built electric dipole via the Stark effect. As a result the interlayer exciton degeneracy is lifted and the bilayer SHG response is further enhanced by an additional two orders of magnitude, well reproduced by our model calculations. Since interlayer exciton transitions are highly tunable also by choosing twist angle and material combination our results open up new approaches for designing the SHG response of layered materials.

Suggested Citation

  • Shivangi Shree & Delphine Lagarde & Laurent Lombez & Cedric Robert & Andrea Balocchi & Kenji Watanabe & Takashi Taniguchi & Xavier Marie & Iann C. Gerber & Mikhail M. Glazov & Leonid E. Golub & Bernha, 2021. "Interlayer exciton mediated second harmonic generation in bilayer MoS2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27213-8
    DOI: 10.1038/s41467-021-27213-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27213-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27213-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Lukas Mennel & Marco M. Furchi & Stefan Wachter & Matthias Paur & Dmitry K. Polyushkin & Thomas Mueller, 2018. "Optical imaging of strain in two-dimensional crystals," Nature Communications, Nature, vol. 9(1), pages 1-6, December.
    2. Ioannis Paradisanos & Shivangi Shree & Antony George & Nadine Leisgang & Cedric Robert & Kenji Watanabe & Takashi Taniguchi & Richard J. Warburton & Andrey Turchanin & Xavier Marie & Iann C. Gerber & , 2020. "Controlling interlayer excitons in MoS2 layers grown by chemical vapor deposition," Nature Communications, Nature, vol. 11(1), pages 1-7, December.
    3. Evgeny M. Alexeev & David A. Ruiz-Tijerina & Mark Danovich & Matthew J. Hamer & Daniel J. Terry & Pramoda K. Nayak & Seongjoon Ahn & Sangyeon Pak & Juwon Lee & Jung Inn Sohn & Maciej R. Molas & Maciej, 2019. "Author Correction: Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures," Nature, Nature, vol. 572(7768), pages 8-8, August.
    4. Evgeny M. Alexeev & David A. Ruiz-Tijerina & Mark Danovich & Matthew J. Hamer & Daniel J. Terry & Pramoda K. Nayak & Seongjoon Ahn & Sangyeon Pak & Juwon Lee & Jung Inn Sohn & Maciej R. Molas & Maciej, 2019. "Resonantly hybridized excitons in moiré superlattices in van der Waals heterostructures," Nature, Nature, vol. 567(7746), pages 81-86, March.
    5. Zeyuan Sun & Yangfan Yi & Tiancheng Song & Genevieve Clark & Bevin Huang & Yuwei Shan & Shuang Wu & Di Huang & Chunlei Gao & Zhanghai Chen & Michael McGuire & Ting Cao & Di Xiao & Wei-Tao Liu & Wang Y, 2019. "Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3," Nature, Nature, vol. 572(7770), pages 497-501, August.
    6. M. Goryca & J. Li & A. V. Stier & T. Taniguchi & K. Watanabe & E. Courtade & S. Shree & C. Robert & B. Urbaszek & X. Marie & S. A. Crooker, 2019. "Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    7. Long Zhang & Zhe Zhang & Fengcheng Wu & Danqing Wang & Rahul Gogna & Shaocong Hou & Kenji Watanabe & Takashi Taniguchi & Krishnamurthy Kulkarni & Thomas Kuo & Stephen R. Forrest & Hui Deng, 2020. "Twist-angle dependence of moiré excitons in WS2/MoSe2 heterobilayers," Nature Communications, Nature, vol. 11(1), pages 1-8, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Biswajit Datta & Mandeep Khatoniar & Prathmesh Deshmukh & Félix Thouin & Rezlind Bushati & Simone Liberato & Stephane Kena Cohen & Vinod M. Menon, 2022. "Highly nonlinear dipolar exciton-polaritons in bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    2. Cheng-Yi Zhu & Zimeng Zhang & Jing-Kai Qin & Zi Wang & Cong Wang & Peng Miao & Yingjie Liu & Pei-Yu Huang & Yao Zhang & Ke Xu & Liang Zhen & Yang Chai & Cheng-Yan Xu, 2023. "Two-dimensional semiconducting SnP2Se6 with giant second-harmonic-generation for monolithic on-chip electronic-photonic integration," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    3. Kunze Lu & Manlin Luo & Weibo Gao & Qi Jie Wang & Hao Sun & Donguk Nam, 2023. "Strong second-harmonic generation by sublattice polarization in non-uniformly strained monolayer graphene," Nature Communications, Nature, vol. 14(1), pages 1-8, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shun Feng & Aidan J. Campbell & Mauro Brotons-Gisbert & Daniel Andres-Penares & Hyeonjun Baek & Takashi Taniguchi & Kenji Watanabe & Bernhard Urbaszek & Iann C. Gerber & Brian D. Gerardot, 2024. "Highly tunable ground and excited state excitonic dipoles in multilayer 2H-MoSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    2. Charalambos Louca & Armando Genco & Salvatore Chiavazzo & Thomas P. Lyons & Sam Randerson & Chiara Trovatello & Peter Claronino & Rahul Jayaprakash & Xuerong Hu & James Howarth & Kenji Watanabe & Taka, 2023. "Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Zhen Lian & Dongxue Chen & Yuze Meng & Xiaotong Chen & Ying Su & Rounak Banerjee & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Chuanwei Zhang & Yong-Tao Cui & Su-Fei Shi, 2023. "Exciton Superposition across Moiré States in a Semiconducting Moiré Superlattice," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    4. Zhiwen Zhou & E. A. Szwed & D. J. Choksy & L. H. Fowler-Gerace & L. V. Butov, 2024. "Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    5. Madeline Winkle & Isaac M. Craig & Stephen Carr & Medha Dandu & Karen C. Bustillo & Jim Ciston & Colin Ophus & Takashi Taniguchi & Kenji Watanabe & Archana Raja & Sinéad M. Griffin & D. Kwabena Bediak, 2023. "Rotational and dilational reconstruction in transition metal dichalcogenide moiré bilayers," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    6. Biswajit Datta & Mandeep Khatoniar & Prathmesh Deshmukh & Félix Thouin & Rezlind Bushati & Simone Liberato & Stephane Kena Cohen & Vinod M. Menon, 2022. "Highly nonlinear dipolar exciton-polaritons in bilayer MoS2," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    7. Qiaoling Lin & Hanlin Fang & Alexei Kalaboukhov & Yuanda Liu & Yi Zhang & Moritz Fischer & Juntao Li & Joakim Hagel & Samuel Brem & Ermin Malic & Nicolas Stenger & Zhipei Sun & Martijn Wubs & Sanshui , 2024. "Moiré-engineered light-matter interactions in MoS2/WSe2 heterobilayers at room temperature," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    8. Zhiheng Huang & Yunfei Bai & Yanchong Zhao & Le Liu & Xuan Zhao & Jiangbin Wu & Kenji Watanabe & Takashi Taniguchi & Wei Yang & Dongxia Shi & Yang Xu & Tiantian Zhang & Qingming Zhang & Ping-Heng Tan , 2024. "Observation of phonon Stark effect," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    10. Sahar Pakdel & Asbjørn Rasmussen & Alireza Taghizadeh & Mads Kruse & Thomas Olsen & Kristian S. Thygesen, 2024. "High-throughput computational stacking reveals emergent properties in natural van der Waals bilayers," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    11. Ziqian Wang & Meng Wang & Jannis Lehmann & Yuki Shiomi & Taka-hisa Arima & Naoto Nagaosa & Yoshinori Tokura & Naoki Ogawa, 2024. "Electric-field-enhanced second-harmonic domain contrast and nonreciprocity in a van der Waals antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    12. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    13. Suman Chatterjee & Medha Dandu & Pushkar Dasika & Rabindra Biswas & Sarthak Das & Kenji Watanabe & Takashi Taniguchi & Varun Raghunathan & Kausik Majumdar, 2023. "Harmonic to anharmonic tuning of moiré potential leading to unconventional Stark effect and giant dipolar repulsion in WS2/WSe2 heterobilayer," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    14. Shuai Xu & Jiesu Wang & Pan Chen & Kuijuan Jin & Cheng Ma & Shiyao Wu & Erjia Guo & Chen Ge & Can Wang & Xiulai Xu & Hongbao Yao & Jingyi Wang & Donggang Xie & Xinyan Wang & Kai Chang & Xuedong Bai & , 2023. "Magnetoelectric coupling in multiferroics probed by optical second harmonic generation," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    15. Xiaoyu Guo & Wenhao Liu & Jonathan Schwartz & Suk Hyun Sung & Dechen Zhang & Makoto Shimizu & Aswin L. N. Kondusamy & Lu Li & Kai Sun & Hui Deng & Harald O. Jeschke & Igor I. Mazin & Robert Hovden & B, 2024. "Extraordinary phase transition revealed in a van der Waals antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    16. Liangting Ye & Wenju Zhou & Dajian Huang & Xiao Jiang & Qiangbing Guo & Xinyu Cao & Shaohua Yan & Xinyu Wang & Donghan Jia & Dequan Jiang & Yonggang Wang & Xiaoqiang Wu & Xiao Zhang & Yang Li & Hechan, 2023. "Manipulation of nonlinear optical responses in layered ferroelectric niobium oxide dihalides," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    17. Fengrui Yao & Volodymyr Multian & Zhe Wang & Nicolas Ubrig & Jérémie Teyssier & Fan Wu & Enrico Giannini & Marco Gibertini & Ignacio Gutiérrez-Lezama & Alberto F. Morpurgo, 2023. "Multiple antiferromagnetic phases and magnetic anisotropy in exfoliated CrBr3 multilayers," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. ZhuangEn Fu & Piumi I. Samarawickrama & John Ackerman & Yanglin Zhu & Zhiqiang Mao & Kenji Watanabe & Takashi Taniguchi & Wenyong Wang & Yuri Dahnovsky & Mingzhong Wu & TeYu Chien & Jinke Tang & Allan, 2024. "Tunneling current-controlled spin states in few-layer van der Waals magnets," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    19. Xinyu Chen & Yufeng Xie & Yaochen Sheng & Hongwei Tang & Zeming Wang & Yu Wang & Yin Wang & Fuyou Liao & Jingyi Ma & Xiaojiao Guo & Ling Tong & Hanqi Liu & Hao Liu & Tianxiang Wu & Jiaxin Cao & Sitong, 2021. "Wafer-scale functional circuits based on two dimensional semiconductors with fabrication optimized by machine learning," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    20. Myeongjin Jang & Sol Lee & Fernando Cantos-Prieto & Ivona Košić & Yue Li & Arthur R. C. McCray & Min-Hyoung Jung & Jun-Yeong Yoon & Loukya Boddapati & Francis Leonard Deepak & Hu Young Jeong & Charuda, 2024. "Direct observation of twisted stacking domains in the van der Waals magnet CrI3," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27213-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.