IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v10y2019i1d10.1038_s41467-019-12180-y.html
   My bibliography  Save this article

Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields

Author

Listed:
  • M. Goryca

    (Los Alamos National Lab)

  • J. Li

    (Los Alamos National Lab)

  • A. V. Stier

    (Los Alamos National Lab)

  • T. Taniguchi

    (National Institute for Materials Science)

  • K. Watanabe

    (National Institute for Materials Science)

  • E. Courtade

    (Universite de Toulouse, INSA-CNRS-UPS, LPCNO)

  • S. Shree

    (Universite de Toulouse, INSA-CNRS-UPS, LPCNO)

  • C. Robert

    (Universite de Toulouse, INSA-CNRS-UPS, LPCNO)

  • B. Urbaszek

    (Universite de Toulouse, INSA-CNRS-UPS, LPCNO)

  • X. Marie

    (Universite de Toulouse, INSA-CNRS-UPS, LPCNO)

  • S. A. Crooker

    (Los Alamos National Lab)

Abstract

In semiconductor physics, many essential optoelectronic material parameters can be experimentally revealed via optical spectroscopy in sufficiently large magnetic fields. For monolayer transition-metal dichalcogenide semiconductors, this field scale is substantial—tens of teslas or more—due to heavy carrier masses and huge exciton binding energies. Here we report absorption spectroscopy of monolayer $${{\rm{MoS}}}_{2},{{\rm{MoSe}}}_{2},{{\rm{MoTe}}}_{2}$$ MoS 2 , MoSe 2 , MoTe 2 , and $${{\rm{WS}}}_{2}$$ WS 2 in very high magnetic fields to 91 T. We follow the diamagnetic shifts and valley Zeeman splittings of not only the exciton’s $$1s$$ 1 s ground state but also its excited $$2s,3s,\ldots ,ns$$ 2 s , 3 s , … , n s Rydberg states. This provides a direct experimental measure of the effective (reduced) exciton masses and dielectric properties. Exciton binding energies, exciton radii, and free-particle bandgaps are also determined. The measured exciton masses are heavier than theoretically predicted, especially for Mo-based monolayers. These results provide essential and quantitative parameters for the rational design of opto-electronic van der Waals heterostructures incorporating 2D semiconductors.

Suggested Citation

  • M. Goryca & J. Li & A. V. Stier & T. Taniguchi & K. Watanabe & E. Courtade & S. Shree & C. Robert & B. Urbaszek & X. Marie & S. A. Crooker, 2019. "Revealing exciton masses and dielectric properties of monolayer semiconductors with high magnetic fields," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
  • Handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12180-y
    DOI: 10.1038/s41467-019-12180-y
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-019-12180-y
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-019-12180-y?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruishi Qi & Andrew Y. Joe & Zuocheng Zhang & Yongxin Zeng & Tiancheng Zheng & Qixin Feng & Jingxu Xie & Emma Regan & Zheyu Lu & Takashi Taniguchi & Kenji Watanabe & Sefaattin Tongay & Michael F. Cromm, 2023. "Thermodynamic behavior of correlated electron-hole fluids in van der Waals heterostructures," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    2. Simon Raiber & Paulo E. Faria Junior & Dennis Falter & Simon Feldl & Petter Marzena & Kenji Watanabe & Takashi Taniguchi & Jaroslav Fabian & Christian Schüller, 2022. "Ultrafast pseudospin quantum beats in multilayer WSe2 and MoSe2," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Shivangi Shree & Delphine Lagarde & Laurent Lombez & Cedric Robert & Andrea Balocchi & Kenji Watanabe & Takashi Taniguchi & Xavier Marie & Iann C. Gerber & Mikhail M. Glazov & Leonid E. Golub & Bernha, 2021. "Interlayer exciton mediated second harmonic generation in bilayer MoS2," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Benjamin Carey & Nils Kolja Wessling & Paul Steeger & Robert Schmidt & Steffen Michaelis de Vasconcellos & Rudolf Bratschitsch & Ashish Arora, 2024. "Giant Faraday rotation in atomically thin semiconductors," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Erfu Liu & Jeremiah Baren & Zhengguang Lu & Takashi Taniguchi & Kenji Watanabe & Dmitry Smirnov & Yia-Chung Chang & Chun Hung Lui, 2021. "Exciton-polaron Rydberg states in monolayer MoSe2 and WSe2," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    6. Zhiwen Zhou & E. A. Szwed & D. J. Choksy & L. H. Fowler-Gerace & L. V. Butov, 2024. "Long-distance decay-less spin transport in indirect excitons in a van der Waals heterostructure," Nature Communications, Nature, vol. 15(1), pages 1-7, December.
    7. Shun Feng & Aidan J. Campbell & Mauro Brotons-Gisbert & Daniel Andres-Penares & Hyeonjun Baek & Takashi Taniguchi & Kenji Watanabe & Bernhard Urbaszek & Iann C. Gerber & Brian D. Gerardot, 2024. "Highly tunable ground and excited state excitonic dipoles in multilayer 2H-MoSe2," Nature Communications, Nature, vol. 15(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:10:y:2019:i:1:d:10.1038_s41467-019-12180-y. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.