IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27189-5.html
   My bibliography  Save this article

A genetically-encoded crosslinker screen identifies SERBP1 as a PKCε substrate influencing translation and cell division

Author

Listed:
  • Silvia Martini

    (Protein Phosphorylation Laboratory, The Francis Crick Institute)

  • Khalil Davis

    (Protein Phosphorylation Laboratory, The Francis Crick Institute)

  • Rupert Faraway

    (RNA Network Laboratory, The Francis Crick Institute
    UCL Queen Square Institute of Neurology, Queen Square)

  • Lisa Elze

    (Radboud University Medical Center)

  • Nicola Lockwood

    (Protein Phosphorylation Laboratory, The Francis Crick Institute)

  • Andrew Jones

    (Cell Cycle Laboratory, The Francis Crick Institute)

  • Xiao Xie

    (Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University)

  • Neil Q. McDonald

    (Signalling and Structural Biology Laboratory, The Francis Crick Institute)

  • David J. Mann

    (Imperial College London)

  • Alan Armstrong

    (Imperial College)

  • Jernej Ule

    (RNA Network Laboratory, The Francis Crick Institute
    UCL Queen Square Institute of Neurology, Queen Square)

  • Peter J. Parker

    (Protein Phosphorylation Laboratory, The Francis Crick Institute
    School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Campus)

Abstract

The PKCε-regulated genome protective pathway provides transformed cells a failsafe to successfully complete mitosis. Despite the necessary role for Aurora B in this programme, it is unclear whether its requirement is sufficient or if other PKCε cell cycle targets are involved. To address this, we developed a trapping strategy using UV-photocrosslinkable amino acids encoded in the PKCε kinase domain. The validation of the mRNA binding protein SERBP1 as a PKCε substrate revealed a series of mitotic events controlled by the catalytic form of PKCε. PKCε represses protein translation, altering SERBP1 binding to the 40 S ribosomal subunit and promoting the assembly of ribonucleoprotein granules containing SERBP1, termed M-bodies. Independent of Aurora B, SERBP1 is shown to be necessary for chromosome segregation and successful cell division, correlating with M-body formation. This requirement for SERBP1 demonstrates that Aurora B acts in concert with translational regulation in the PKCε-controlled pathway exerting genome protection.

Suggested Citation

  • Silvia Martini & Khalil Davis & Rupert Faraway & Lisa Elze & Nicola Lockwood & Andrew Jones & Xiao Xie & Neil Q. McDonald & David J. Mann & Alan Armstrong & Jernej Ule & Peter J. Parker, 2021. "A genetically-encoded crosslinker screen identifies SERBP1 as a PKCε substrate influencing translation and cell division," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27189-5
    DOI: 10.1038/s41467-021-27189-5
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27189-5
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27189-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Ptacek & Geeta Devgan & Gregory Michaud & Heng Zhu & Xiaowei Zhu & Joseph Fasolo & Hong Guo & Ghil Jona & Ashton Breitkreutz & Richelle Sopko & Rhonda R. McCartney & Martin C. Schmidt & Najma Ra, 2005. "Global analysis of protein phosphorylation in yeast," Nature, Nature, vol. 438(7068), pages 679-684, December.
    2. Joanna R. Kelly & Silvia Martini & Nicola Brownlow & Dhira Joshi & Stefania Federico & Shirin Jamshidi & Svend Kjaer & Nicola Lockwood & Khondaker Miraz Rahman & Franca Fraternali & Peter J. Parker & , 2020. "The Aurora B specificity switch is required to protect from non-disjunction at the metaphase/anaphase transition," Nature Communications, Nature, vol. 11(1), pages 1-14, December.
    3. Andreas M. Anger & Jean-Paul Armache & Otto Berninghausen & Michael Habeck & Marion Subklewe & Daniel N. Wilson & Roland Beckmann, 2013. "Structures of the human and Drosophila 80S ribosome," Nature, Nature, vol. 497(7447), pages 80-85, May.
    4. Nicola Brownlow & Tanya Pike & Daniel Zicha & Lucy Collinson & Peter J. Parker, 2014. "Mitotic catenation is monitored and resolved by a PKCε-regulated pathway," Nature Communications, Nature, vol. 5(1), pages 1-13, December.
    5. Joanna R. Kelly & Silvia Martini & Nicola Brownlow & Dhira Joshi & Stefania Federico & Shirin Jamshidi & Svend Kjaer & Nicola Lockwood & Khondaker Miraz Rahman & Franca Fraternali & Peter J. Parker & , 2020. "Author Correction: The Aurora B specificity switch is required to protect from non-disjunction at the metaphase/anaphase transition," Nature Communications, Nature, vol. 11(1), pages 1-1, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kai Hao & Yawen Chen & Xiumin Yan & Xueliang Zhu, 2021. "Cilia locally synthesize proteins to sustain their ultrastructure and functions," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    2. Shinsuke Ohnuki & Yoshikazu Ohya, 2018. "High-dimensional single-cell phenotyping reveals extensive haploinsufficiency," PLOS Biology, Public Library of Science, vol. 16(5), pages 1-23, May.
    3. Ryan Damme & Kongpan Li & Minjie Zhang & Jianhui Bai & Wilson H. Lee & Joseph D. Yesselman & Zhipeng Lu & Willem A. Velema, 2022. "Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Thomas C Whisenant & David T Ho & Ryan W Benz & Jeffrey S Rogers & Robyn M Kaake & Elizabeth A Gordon & Lan Huang & Pierre Baldi & Lee Bardwell, 2010. "Computational Prediction and Experimental Verification of New MAP Kinase Docking Sites and Substrates Including Gli Transcription Factors," PLOS Computational Biology, Public Library of Science, vol. 6(8), pages 1-21, August.
    5. Claudia M. Fusco & Kristina Desch & Aline R. Dörrbaum & Mantian Wang & Anja Staab & Ivy C. W. Chan & Eleanor Vail & Veronica Villeri & Julian D. Langer & Erin M. Schuman, 2021. "Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    6. Pengyi Yang & Xiaofeng Zheng & Vivek Jayaswal & Guang Hu & Jean Yee Hwa Yang & Raja Jothi, 2015. "Knowledge-Based Analysis for Detecting Key Signaling Events from Time-Series Phosphoproteomics Data," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-18, August.
    7. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    8. Sourav Bandyopadhyay & Ryan Kelley & Nevan J Krogan & Trey Ideker, 2008. "Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-8, April.
    9. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    10. Yan Chen & Bin Tsai & Ningning Li & Ning Gao, 2022. "Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    11. Patrick R. Smith & Sarah Loerch & Nikesh Kunder & Alexander D. Stanowick & Tzu-Fang Lou & Zachary T. Campbell, 2021. "Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    12. Jacob D Feala & Jorge Cortes & Phillip M Duxbury & Andrew D McCulloch & Carlo Piermarocchi & Giovanni Paternostro, 2012. "Statistical Properties and Robustness of Biological Controller-Target Networks," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
    13. Naomi R. Genuth & Zhen Shi & Koshi Kunimoto & Victoria Hung & Adele F. Xu & Craig H. Kerr & Gerald C. Tiu & Juan A. Oses-Prieto & Rachel E. A. Salomon-Shulman & Jeffrey D. Axelrod & Alma L. Burlingame, 2022. "A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    14. Saket Navlakha & Anthony Gitter & Ziv Bar-Joseph, 2012. "A Network-based Approach for Predicting Missing Pathway Interactions," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-13, August.
    15. Ulrike Zinnall & Miha Milek & Igor Minia & Carlos H. Vieira-Vieira & Simon Müller & Guido Mastrobuoni & Orsalia-Georgia Hazapis & Simone Giudice & David Schwefel & Nadine Bley & Franka Voigt & Jeffrey, 2022. "HDLBP binds ER-targeted mRNAs by multivalent interactions to promote protein synthesis of transmembrane and secreted proteins," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    16. Jong Woo Bae & Sangtae Kim & V. Narry Kim & Jong-Seo Kim, 2021. "Photoactivatable ribonucleosides mark base-specific RNA-binding sites," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    17. Qi Yu & Xuanyunjing Gong & Yue Tong & Min Wang & Kai Duan & Xinyu Zhang & Feng Ge & Xilan Yu & Shanshan Li, 2022. "Phosphorylation of Jhd2 by the Ras-cAMP-PKA(Tpk2) pathway regulates histone modifications and autophagy," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    18. Doron Betel & Kevin E Breitkreuz & Ruth Isserlin & Danielle Dewar-Darch & Mike Tyers & Christopher W V Hogue, 2007. "Structure-Templated Predictions of Novel Protein Interactions from Sequence Information," PLOS Computational Biology, Public Library of Science, vol. 3(9), pages 1-7, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27189-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.