IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0029374.html
   My bibliography  Save this article

Statistical Properties and Robustness of Biological Controller-Target Networks

Author

Listed:
  • Jacob D Feala
  • Jorge Cortes
  • Phillip M Duxbury
  • Andrew D McCulloch
  • Carlo Piermarocchi
  • Giovanni Paternostro

Abstract

Cells are regulated by networks of controllers having many targets, and targets affected by many controllers, in a “many-to-many” control structure. Here we study several of these bipartite (two-layer) networks. We analyze both naturally occurring biological networks (composed of transcription factors controlling genes, microRNAs controlling mRNA transcripts, and protein kinases controlling protein substrates) and a drug-target network composed of kinase inhibitors and of their kinase targets. Certain statistical properties of these biological bipartite structures seem universal across systems and species, suggesting the existence of common control strategies in biology. The number of controllers is ∼8% of targets and the density of links is 2.5%±1.2%. Links per node are predominantly exponentially distributed. We explain the conservation of the mean number of incoming links per target using a mathematical model of control networks, which also indicates that the “many-to-many” structure of biological control has properties of efficient robustness. The drug-target network has many statistical properties similar to the biological networks and we show that drug-target networks with biomimetic features can be obtained. These findings suggest a completely new approach to pharmacological control of biological systems. Molecular tools, such as kinase inhibitors, are now available to test if therapeutic combinations may benefit from being designed with biomimetic properties, such as “many-to-many” targeting, very wide coverage of the target set, and redundancy of incoming links per target.

Suggested Citation

  • Jacob D Feala & Jorge Cortes & Phillip M Duxbury & Andrew D McCulloch & Carlo Piermarocchi & Giovanni Paternostro, 2012. "Statistical Properties and Robustness of Biological Controller-Target Networks," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-11, January.
  • Handle: RePEc:plo:pone00:0029374
    DOI: 10.1371/journal.pone.0029374
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0029374
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0029374&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0029374?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Charles Sawyers, 2004. "Targeted cancer therapy," Nature, Nature, vol. 432(7015), pages 294-297, November.
    2. Piers Nash & Xiaojing Tang & Stephen Orlicky & Qinghua Chen & Frank B. Gertler & Michael D. Mendenhall & Frank Sicheri & Tony Pawson & Mike Tyers, 2001. "Multisite phosphorylation of a CDK inhibitor sets a threshold for the onset of DNA replication," Nature, Nature, vol. 414(6863), pages 514-521, November.
    3. Jason Ptacek & Geeta Devgan & Gregory Michaud & Heng Zhu & Xiaowei Zhu & Joseph Fasolo & Hong Guo & Ghil Jona & Ashton Breitkreutz & Richelle Sopko & Rhonda R. McCartney & Martin C. Schmidt & Najma Ra, 2005. "Global analysis of protein phosphorylation in yeast," Nature, Nature, vol. 438(7068), pages 679-684, December.
    4. Diego Calzolari & Stefania Bruschi & Laurence Coquin & Jennifer Schofield & Jacob D Feala & John C Reed & Andrew D McCulloch & Giovanni Paternostro, 2008. "Search Algorithms as a Framework for the Optimization of Drug Combinations," PLOS Computational Biology, Public Library of Science, vol. 4(12), pages 1-14, December.
    5. H. Jeong & S. P. Mason & A.-L. Barabási & Z. N. Oltvai, 2001. "Lethality and centrality in protein networks," Nature, Nature, vol. 411(6833), pages 41-42, May.
    6. H. Jeong & B. Tombor & R. Albert & Z. N. Oltvai & A.-L. Barabási, 2000. "The large-scale organization of metabolic networks," Nature, Nature, vol. 407(6804), pages 651-654, October.
    7. Sergey V. Buldyrev & Roni Parshani & Gerald Paul & H. Eugene Stanley & Shlomo Havlin, 2010. "Catastrophic cascade of failures in interdependent networks," Nature, Nature, vol. 464(7291), pages 1025-1028, April.
    8. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2011. "Controllability of complex networks," Nature, Nature, vol. 473(7346), pages 167-173, May.
    9. Magnus Egerstedt, 2011. "Degrees of control," Nature, Nature, vol. 473(7346), pages 158-159, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aming Li & Yang-Yu Liu, 2020. "Controlling Network Dynamics," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 22(07n08), pages 1-19, February.
    2. Yang, Hyeonchae & Jung, Woo-Sung, 2016. "Structural efficiency to manipulate public research institution networks," Technological Forecasting and Social Change, Elsevier, vol. 110(C), pages 21-32.
    3. Wouter Vermeer & Otto Koppius & Peter Vervest, 2018. "The Radiation-Transmission-Reception (RTR) model of propagation: Implications for the effectiveness of network interventions," PLOS ONE, Public Library of Science, vol. 13(12), pages 1-21, December.
    4. Laurienti, Paul J. & Joyce, Karen E. & Telesford, Qawi K. & Burdette, Jonathan H. & Hayasaka, Satoru, 2011. "Universal fractal scaling of self-organized networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(20), pages 3608-3613.
    5. Chen, Shi-Ming & Xu, Yun-Fei & Nie, Sen, 2017. "Robustness of network controllability in cascading failure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 471(C), pages 536-539.
    6. Chung-Yen Yu & Yung-Ting Chuang & Hsi-Peng Kuan, 2017. "Understanding Faculty Collaboration and Productivity: A Case Study," Asian Social Science, Canadian Center of Science and Education, vol. 13(3), pages 1-1, March.
    7. Pang, Shao-Peng & Hao, Fei, 2018. "Effect of interaction strength on robustness of controlling edge dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 497(C), pages 246-257.
    8. Christos Ellinas & Neil Allan & Anders Johansson, 2016. "Exploring Structural Patterns Across Evolved and Designed Systems: A Network Perspective," Systems Engineering, John Wiley & Sons, vol. 19(3), pages 179-192, May.
    9. Xiao, Guanping & Zheng, Zheng & Wang, Haoqin, 2017. "Evolution of Linux operating system network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 466(C), pages 249-258.
    10. Yang-Yu Liu & Jean-Jacques Slotine & Albert-László Barabási, 2012. "Control Centrality and Hierarchical Structure in Complex Networks," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-7, September.
    11. Hayato Goto & Hideki Takayasu & Misako Takayasu, 2017. "Estimating risk propagation between interacting firms on inter-firm complex network," PLOS ONE, Public Library of Science, vol. 12(10), pages 1-12, October.
    12. Gong, Pulin & van Leeuwen, Cees, 2003. "Emergence of scale-free network with chaotic units," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 321(3), pages 679-688.
    13. Ruskin, Heather J. & Burns, John, 2006. "Weighted networks in immune system shape space," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 365(2), pages 549-555.
    14. Jiang, Zhong-Yuan & Zeng, Yong & Liu, Zhi-Hong & Ma, Jian-Feng, 2019. "Identifying critical nodes’ group in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 121-132.
    15. Jordán, Ferenc, 2022. "The network perspective: Vertical connections linking organizational levels," Ecological Modelling, Elsevier, vol. 473(C).
    16. Rui Ding, 2019. "The Complex Network Theory-Based Urban Land-Use and Transport Interaction Studies," Complexity, Hindawi, vol. 2019, pages 1-14, June.
    17. P.B., Divya & Lekha, Divya Sindhu & Johnson, T.P. & Balakrishnan, Kannan, 2022. "Vulnerability of link-weighted complex networks in central attacks and fallback strategy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 590(C).
    18. Hou, Bonan & Yao, Yiping & Liao, Dongsheng, 2012. "Identifying all-around nodes for spreading dynamics in complex networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(15), pages 4012-4017.
    19. Qing Cai & Mahardhika Pratama & Sameer Alam, 2019. "Interdependency and Vulnerability of Multipartite Networks under Target Node Attacks," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    20. Cemal Cagatay Bilgin & Shayoni Ray & Banu Baydil & William P Daley & Melinda Larsen & Bülent Yener, 2012. "Multiscale Feature Analysis of Salivary Gland Branching Morphogenesis," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-19, March.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0029374. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.