IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27298-1.html
   My bibliography  Save this article

Cilia locally synthesize proteins to sustain their ultrastructure and functions

Author

Listed:
  • Kai Hao

    (State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Yawen Chen

    (State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

  • Xiumin Yan

    (Ministry of Education-Shanghai Key Laboratory of Children’s Environmental Health, Institute of Early Life Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine)

  • Xueliang Zhu

    (State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences
    University of Chinese Academy of Sciences
    University of Chinese Academy of Sciences)

Abstract

Cilia are microtubule-based hair-like organelles propelling locomotion and extracellular liquid flow or sensing environmental stimuli. As cilia are diffusion barrier-gated subcellular compartments, their protein components are thought to come from the cell body through intraflagellar transport or diffusion. Here we show that cilia locally synthesize proteins to maintain their structure and functions. Multicilia of mouse ependymal cells are abundant in ribosomal proteins, translation initiation factors, and RNA, including 18 S rRNA and tubulin mRNA. The cilia actively generate nascent peptides, including those of tubulin. mRNA-binding protein Fmrp localizes in ciliary central lumen and appears to function in mRNA delivery into the cilia. Its depletion by RNAi impairs ciliary local translation and induces multicilia degeneration. Expression of exogenous Fmrp, but not an isoform tethered to mitochondria, rescues the degeneration defects. Therefore, local translation defects in cilia might contribute to the pathology of ciliopathies and other diseases such as Fragile X syndrome.

Suggested Citation

  • Kai Hao & Yawen Chen & Xiumin Yan & Xueliang Zhu, 2021. "Cilia locally synthesize proteins to sustain their ultrastructure and functions," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27298-1
    DOI: 10.1038/s41467-021-27298-1
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27298-1
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27298-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Manuel Ascano & Neelanjan Mukherjee & Pradeep Bandaru & Jason B. Miller & Jeffrey D. Nusbaum & David L. Corcoran & Christine Langlois & Mathias Munschauer & Scott Dewell & Markus Hafner & Zev Williams, 2012. "FMRP targets distinct mRNA sequence elements to regulate protein expression," Nature, Nature, vol. 492(7429), pages 382-386, December.
    2. Andreas M. Anger & Jean-Paul Armache & Otto Berninghausen & Michael Habeck & Marion Subklewe & Daniel N. Wilson & Roland Beckmann, 2013. "Structures of the human and Drosophila 80S ribosome," Nature, Nature, vol. 497(7447), pages 80-85, May.
    3. Hao Liu & Jianqun Zheng & Lei Zhu & Lele Xie & Yawen Chen & Yirong Zhang & Wei Zhang & Yue Yin & Chao Peng & Jun Zhou & Xueliang Zhu & Xiumin Yan, 2021. "Wdr47, Camsaps, and Katanin cooperate to generate ciliary central microtubules," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xueming Meng & Cong Xu & Jiawei Li & Benhua Qiu & Jiajun Luo & Qin Hong & Yujie Tong & Chuyu Fang & Yanyan Feng & Rui Ma & Xiangyi Shi & Cheng Lin & Chen Pan & Xueliang Zhu & Xiumin Yan & Yao Cong, 2024. "Multi-scale structures of the mammalian radial spoke and divergence of axonemal complexes in ependymal cilia," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    2. Ryan Damme & Kongpan Li & Minjie Zhang & Jianhui Bai & Wilson H. Lee & Joseph D. Yesselman & Zhipeng Lu & Willem A. Velema, 2022. "Chemical reversible crosslinking enables measurement of RNA 3D distances and alternative conformations in cells," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    3. Claudia M. Fusco & Kristina Desch & Aline R. Dörrbaum & Mantian Wang & Anja Staab & Ivy C. W. Chan & Eleanor Vail & Veronica Villeri & Julian D. Langer & Erin M. Schuman, 2021. "Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins," Nature Communications, Nature, vol. 12(1), pages 1-14, December.
    4. Naomi R. Genuth & Zhen Shi & Koshi Kunimoto & Victoria Hung & Adele F. Xu & Craig H. Kerr & Gerald C. Tiu & Juan A. Oses-Prieto & Rachel E. A. Salomon-Shulman & Jeffrey D. Axelrod & Alma L. Burlingame, 2022. "A stem cell roadmap of ribosome heterogeneity reveals a function for RPL10A in mesoderm production," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Xiangbin Ruan & Kaining Hu & Xiaochang Zhang, 2023. "PIE-seq: identifying RNA-binding protein targets by dual RNA-deaminase editing and sequencing," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
    6. Patrick C. Hoffmann & Jan Philipp Kreysing & Iskander Khusainov & Maarten W. Tuijtel & Sonja Welsch & Martin Beck, 2022. "Structures of the eukaryotic ribosome and its translational states in situ," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Ulrike Zinnall & Miha Milek & Igor Minia & Carlos H. Vieira-Vieira & Simon Müller & Guido Mastrobuoni & Orsalia-Georgia Hazapis & Simone Giudice & David Schwefel & Nadine Bley & Franka Voigt & Jeffrey, 2022. "HDLBP binds ER-targeted mRNAs by multivalent interactions to promote protein synthesis of transmembrane and secreted proteins," Nature Communications, Nature, vol. 13(1), pages 1-21, December.
    8. Thu Giang Nguyen & Christina Ritter & Eva Kummer, 2023. "Structural insights into the role of GTPBP10 in the RNA maturation of the mitoribosome," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    9. Yan Chen & Bin Tsai & Ningning Li & Ning Gao, 2022. "Structural remodeling of ribosome associated Hsp40-Hsp70 chaperones during co-translational folding," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Patrick R. Smith & Sarah Loerch & Nikesh Kunder & Alexander D. Stanowick & Tzu-Fang Lou & Zachary T. Campbell, 2021. "Functionally distinct roles for eEF2K in the control of ribosome availability and p-body abundance," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    11. Silvia Martini & Khalil Davis & Rupert Faraway & Lisa Elze & Nicola Lockwood & Andrew Jones & Xiao Xie & Neil Q. McDonald & David J. Mann & Alan Armstrong & Jernej Ule & Peter J. Parker, 2021. "A genetically-encoded crosslinker screen identifies SERBP1 as a PKCε substrate influencing translation and cell division," Nature Communications, Nature, vol. 12(1), pages 1-16, December.
    12. Jong Woo Bae & Sangtae Kim & V. Narry Kim & Jong-Seo Kim, 2021. "Photoactivatable ribonucleosides mark base-specific RNA-binding sites," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    13. Kyoungmi Kim & David Hessl & Jamie L Randol & Glenda M Espinal & Andrea Schneider & Dragana Protic & Elber Yuksel Aydin & Randi J Hagerman & Paul J Hagerman, 2019. "Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27298-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.