IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1002640.html
   My bibliography  Save this article

A Network-based Approach for Predicting Missing Pathway Interactions

Author

Listed:
  • Saket Navlakha
  • Anthony Gitter
  • Ziv Bar-Joseph

Abstract

Embedded within large-scale protein interaction networks are signaling pathways that encode response cascades in the cell. Unfortunately, even for well-studied species like S. cerevisiae, only a fraction of all true protein interactions are known, which makes it difficult to reason about the exact flow of signals and the corresponding causal relations in the network. To help address this problem, we introduce a framework for predicting new interactions that aid connectivity between upstream proteins (sources) and downstream transcription factors (targets) of a particular pathway. Our algorithms attempt to globally minimize the distance between sources and targets by finding a small set of shortcut edges to add to the network. Unlike existing algorithms for predicting general protein interactions, by focusing on proteins involved in specific responses our approach homes-in on pathway-consistent interactions. We applied our method to extend pathways in osmotic stress response in yeast and identified several missing interactions, some of which are supported by published reports. We also performed experiments that support a novel interaction not previously reported. Our framework is general and may be applicable to edge prediction problems in other domains.Author Summary: Networks of protein interactions encode a variety of molecular processes occurring in the cell. Embedded within these networks are important subnetworks called signaling pathways. Pathways are initiated by upstream proteins (called sources) that receive signals from the environment and trigger a cascade of information to downstream proteins (targets). Modeling the interactions that occur within this cascade is important because pathway disruption has been linked to several diseases. Further, the interactions help us better understand how cells respond to various conditions and environments. Unfortunately, interaction networks today are largely incomplete, which makes this analysis difficult. We provide a framework to model missing interactions in pathways by searching for interactions that putatively result in quicker and more efficient source-target cascades. We find that we can substantially shorten source-target distances with only a few additional edges and that many of our predicted edges have support in several knowledge databases and literature reports. We believe our approach will be useful to identify interesting and important pathway-centric interactions that have been missed by previous experimental assays.

Suggested Citation

  • Saket Navlakha & Anthony Gitter & Ziv Bar-Joseph, 2012. "A Network-based Approach for Predicting Missing Pathway Interactions," PLOS Computational Biology, Public Library of Science, vol. 8(8), pages 1-13, August.
  • Handle: RePEc:plo:pcbi00:1002640
    DOI: 10.1371/journal.pcbi.1002640
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002640
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1002640&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1002640?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jason Ptacek & Geeta Devgan & Gregory Michaud & Heng Zhu & Xiaowei Zhu & Joseph Fasolo & Hong Guo & Ghil Jona & Ashton Breitkreutz & Richelle Sopko & Rhonda R. McCartney & Martin C. Schmidt & Najma Ra, 2005. "Global analysis of protein phosphorylation in yeast," Nature, Nature, vol. 438(7068), pages 679-684, December.
    2. Oleksii Kuchaiev & Marija Rašajski & Desmond J Higham & Nataša Pržulj, 2009. "Geometric De-noising of Protein-Protein Interaction Networks," PLOS Computational Biology, Public Library of Science, vol. 5(8), pages 1-10, August.
    3. Christopher T. Harbison & D. Benjamin Gordon & Tong Ihn Lee & Nicola J. Rinaldi & Kenzie D. Macisaac & Timothy W. Danford & Nancy M. Hannett & Jean-Bosco Tagne & David B. Reynolds & Jane Yoo & Ezra G., 2004. "Transcriptional regulatory code of a eukaryotic genome," Nature, Nature, vol. 431(7004), pages 99-104, September.
    4. Aaron Clauset & Cristopher Moore & M. E. J. Newman, 2008. "Hierarchical structure and the prediction of missing links in networks," Nature, Nature, vol. 453(7191), pages 98-101, May.
    5. Benjamin A Shoemaker & Anna R Panchenko, 2007. "Deciphering Protein–Protein Interactions. Part II. Computational Methods to Predict Protein and Domain Interaction Partners," PLOS Computational Biology, Public Library of Science, vol. 3(4), pages 1-7, April.
    6. Oleg Burdakov & Patrick Doherty & Kaj Holmberg & Per-Magnus Olsson, 2010. "Optimal placement of UV-based communications relay nodes," Journal of Global Optimization, Springer, vol. 48(4), pages 511-531, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyi Liu & Bin Liu & Zhimin Huang & Ting Shi & Yingyi Chen & Jian Zhang, 2012. "SPPS: A Sequence-Based Method for Predicting Probability of Protein-Protein Interaction Partners," PLOS ONE, Public Library of Science, vol. 7(1), pages 1-6, January.
    2. Yi Fang & William Benjamin & Mengtian Sun & Karthik Ramani, 2011. "Global Geometric Affinity for Revealing High Fidelity Protein Interaction Network," PLOS ONE, Public Library of Science, vol. 6(5), pages 1-10, May.
    3. Sourav Bandyopadhyay & Ryan Kelley & Nevan J Krogan & Trey Ideker, 2008. "Functional Maps of Protein Complexes from Quantitative Genetic Interaction Data," PLOS Computational Biology, Public Library of Science, vol. 4(4), pages 1-8, April.
    4. Kumar, Ajay & Singh, Shashank Sheshar & Singh, Kuldeep & Biswas, Bhaskar, 2020. "Link prediction techniques, applications, and performance: A survey," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    5. Yao Hongxing & Lu Yunxia, 2017. "Analyzing the Potential Influence of Shanghai Stock Market Based on Link Prediction Method," Journal of Systems Science and Information, De Gruyter, vol. 5(5), pages 446-461, October.
    6. Gergely Tibély & David Sousa-Rodrigues & Péter Pollner & Gergely Palla, 2016. "Comparing the Hierarchy of Keywords in On-Line News Portals," PLOS ONE, Public Library of Science, vol. 11(11), pages 1-15, November.
    7. Ding, Ying, 2011. "Community detection: Topological vs. topical," Journal of Informetrics, Elsevier, vol. 5(4), pages 498-514.
    8. Matvei Khoroshkin & Andrey Buyan & Martin Dodel & Albertas Navickas & Johnny Yu & Fathima Trejo & Anthony Doty & Rithvik Baratam & Shaopu Zhou & Sean B. Lee & Tanvi Joshi & Kristle Garcia & Benedict C, 2024. "Systematic identification of post-transcriptional regulatory modules," Nature Communications, Nature, vol. 15(1), pages 1-21, December.
    9. Gräbner, Claudius, 2016. "From realism to instrumentalism - and back? Methodological implications of changes in the epistemology of economics," MPRA Paper 71933, University Library of Munich, Germany.
    10. Liu, Chuang & Zhou, Wei-Xing, 2012. "Heterogeneity in initial resource configurations improves a network-based hybrid recommendation algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(22), pages 5704-5711.
    11. Zing Tsung-Yeh Tsai & Shin-Han Shiu & Huai-Kuang Tsai, 2015. "Contribution of Sequence Motif, Chromatin State, and DNA Structure Features to Predictive Models of Transcription Factor Binding in Yeast," PLOS Computational Biology, Public Library of Science, vol. 11(8), pages 1-22, August.
    12. Tamás Nepusz & Tamás Vicsek, 2013. "Hierarchical Self-Organization of Non-Cooperating Individuals," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-9, December.
    13. Xia, Yongxiang & Pang, Wenbo & Zhang, Xuejun, 2021. "Mining relationships between performance of link prediction algorithms and network structure," Chaos, Solitons & Fractals, Elsevier, vol. 153(P2).
    14. Gross, Eitan, 2015. "Effect of environmental stress on regulation of gene expression in the yeast," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 430(C), pages 224-235.
    15. Nora Connor & Albert Barberán & Aaron Clauset, 2017. "Using null models to infer microbial co-occurrence networks," PLOS ONE, Public Library of Science, vol. 12(5), pages 1-23, May.
    16. Aslan, Serpil & Kaya, Buket & Kaya, Mehmet, 2019. "Predicting potential links by using strengthened projections in evolving bipartite networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 525(C), pages 998-1011.
    17. Leto Peel & Tiago P. Peixoto & Manlio De Domenico, 2022. "Statistical inference links data and theory in network science," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    18. Rosanna Grassi & Paolo Bartesaghi & Stefano Benati & Gian Paolo Clemente, 2021. "Multi-Attribute Community Detection in International Trade Network," Networks and Spatial Economics, Springer, vol. 21(3), pages 707-733, September.
    19. Amulyashree Sridhar & Sharvani GS & AH Manjunatha Reddy & Biplab Bhattacharjee & Kalyan Nagaraj, 2019. "The Eminence of Co-Expressed Ties in Schizophrenia Network Communities," Data, MDPI, vol. 4(4), pages 1-23, November.
    20. Li, Qing & Zhang, Huaige & Hong, Xianpei, 2020. "Knowledge structure of technology licensing based on co-keywords network: A review and future directions," International Review of Economics & Finance, Elsevier, vol. 66(C), pages 154-165.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1002640. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.