IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26473-8.html
   My bibliography  Save this article

One-step ethylene production from a four-component gas mixture by a single physisorbent

Author

Listed:
  • Jian-Wei Cao

    (Northwestern Polytechnical University)

  • Soumya Mukherjee

    (University of Limerick
    Technical University of Munich)

  • Tony Pham

    (University of South Florida)

  • Yu Wang

    (Northwestern Polytechnical University)

  • Teng Wang

    (Northwestern Polytechnical University)

  • Tao Zhang

    (Northwestern Polytechnical University)

  • Xue Jiang

    (Northwestern Polytechnical University)

  • Hui-Juan Tang

    (Northwestern Polytechnical University)

  • Katherine A. Forrest

    (University of South Florida)

  • Brian Space

    (University of South Florida
    North Carolina State University)

  • Michael J. Zaworotko

    (University of Limerick)

  • Kai-Jie Chen

    (Northwestern Polytechnical University)

Abstract

One-step adsorptive purification of ethylene (C2H4) from four-component gas mixtures comprising acetylene (C2H2), ethylene (C2H4), ethane (C2H6) and carbon dioxide (CO2) is an unmet challenge in the area of commodity purification. Herein, we report that the ultramicroporous sorbent Zn-atz-oba (H2oba = 4,4-dicarboxyl diphenyl ether; Hatz = 3-amino-1,2,4-triazole) enables selective adsorption of C2H2, C2H6 and CO2 over C2H4 thanks to the binding sites that lie in its undulating pores. Molecular simulations provide insight into the binding sites in Zn-atz-oba that are responsible for coadsorption of C2H2, C2H6 and CO2 over C2H4. Dynamic breakthrough experiments demonstrate that the selective binding exhibited by Zn-atz-oba can produce polymer-grade purity (>99.95%) C2H4 from binary (1:1 for C2H4/C2H6), ternary (1:1:1 for C2H2/C2H4/C2H6) and quaternary (1:1:1:1 for C2H2/C2H4/C2H6/CO2) gas mixtures in a single step.

Suggested Citation

  • Jian-Wei Cao & Soumya Mukherjee & Tony Pham & Yu Wang & Teng Wang & Tao Zhang & Xue Jiang & Hui-Juan Tang & Katherine A. Forrest & Brian Space & Michael J. Zaworotko & Kai-Jie Chen, 2021. "One-step ethylene production from a four-component gas mixture by a single physisorbent," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26473-8
    DOI: 10.1038/s41467-021-26473-8
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26473-8
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26473-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Zheng & He, Qijiao & Wang, Chen & Yu, Na & Bello, Idris Temitope & Guo, Meiting & Ni, Meng, 2023. "Protonic ceramic fuel cells for power-ethylene cogeneration: A modelling study on structural parameters," Energy, Elsevier, vol. 264(C).
    2. Peixin Zhang & Lifeng Yang & Xing Liu & Jun Wang & Xian Suo & Liyuan Chen & Xili Cui & Huabin Xing, 2022. "Ultramicroporous material based parallel and extended paraffin nano-trap for benchmark olefin purification," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. Enyu Wu & Xiao-Wen Gu & Di Liu & Xu Zhang & Hui Wu & Wei Zhou & Guodong Qian & Bin Li, 2023. "Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    4. Rong Yang & Yu Wang & Jian-Wei Cao & Zi-Ming Ye & Tony Pham & Katherine A. Forrest & Rajamani Krishna & Hongwei Chen & Libo Li & Bo-Kai Ling & Tao Zhang & Tong Gao & Xue Jiang & Xiang-Ou Xu & Qian-Hao, 2024. "Hydrogen bond unlocking-driven pore structure control for shifting multi-component gas separation function," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    5. Yunjia Jiang, & Yongqi Hu, & Binquan Luan, & Lingyao Wang, & Rajamani Krishna, & Haofei Ni, & Xin Hu & Yuanbin Zhang, 2023. "Benchmark single-step ethylene purification from ternary mixtures by a customized fluorinated anion-embedded MOF," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    2. Sai Chen & Ran Luo & Zhi-Jian Zhao & Chunlei Pei & Yiyi Xu & Zhenpu Lu & Chengjie Zhao & Hongbo Song & Jinlong Gong, 2023. "Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    3. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    4. Haribal, Vasudev Pralhad & Neal, Luke M. & Li, Fanxing, 2017. "Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis," Energy, Elsevier, vol. 119(C), pages 1024-1035.
    5. Xia, Wei & Wang, Xue & Li, Shuangshuang & Jiang, Zhenhua & Chen, Kun & Liu, Dong, 2024. "Multiple synergistic roles of Zr modification on ZSM-5 in performant and stable catalyst for ethanol conversion to propene," Energy, Elsevier, vol. 288(C).
    6. Talaei, Alireza & Ahiduzzaman, Md. & Kumar, Amit, 2018. "Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation potentials in the chemical sector," Energy, Elsevier, vol. 153(C), pages 231-247.
    7. Subin Jung & Hyojin Jung & Yuchan Ahn, 2022. "Optimal Economic–Environmental Design of Heat Exchanger Network in Naphtha Cracking Center Considering Fuel Type and CO 2 Emissions," Energies, MDPI, vol. 15(24), pages 1-14, December.
    8. Ziyad Sherif & Shoaib Sarfraz & Mark Jolly & Konstantinos Salonitis, 2023. "Greening Foundation Industries: Shared Processes and Sustainable Pathways," Sustainability, MDPI, vol. 15(19), pages 1-17, October.
    9. Ren, Tao & Daniëls, Bert & Patel, Martin K. & Blok, Kornelis, 2009. "Petrochemicals from oil, natural gas, coal and biomass: Production costs in 2030–2050," Resources, Conservation & Recycling, Elsevier, vol. 53(12), pages 653-663.
    10. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    11. Masih, Mansur & Algahtani, Ibrahim & De Mello, Lurion, 2010. "Price dynamics of crude oil and the regional ethylene markets," Energy Economics, Elsevier, vol. 32(6), pages 1435-1444, November.
    12. Kapsalyamova, Zhanna & Paltsev, Sergey, 2020. "Use of natural gas and oil as a source of feedstocks," Energy Economics, Elsevier, vol. 92(C).
    13. Park, Ki-Bum & Jeong, Yong-Seong & Kim, Joo-Sik, 2019. "Activator-assisted pyrolysis of polypropylene," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    14. Zahra Gholami & Fatemeh Gholami & Zdeněk Tišler & Martin Tomas & Mohammadtaghi Vakili, 2021. "A Review on Production of Light Olefins via Fluid Catalytic Cracking," Energies, MDPI, vol. 14(4), pages 1-36, February.
    15. Zhu, Qun-Xiong & Zhang, Chen & He, Yan-Lin & Xu, Yuan, 2018. "Energy modeling and saving potential analysis using a novel extreme learning fuzzy logic network: A case study of ethylene industry," Applied Energy, Elsevier, vol. 213(C), pages 322-333.
    16. Dobroschke, Stephan, 2012. "Energieeffizienzpotenziale und staatlicher Lenkungsbedarf," FiFo Discussion Papers - Finanzwissenschaftliche Diskussionsbeiträge 12-1, University of Cologne, FiFo Institute for Public Economics.
    17. Enyu Wu & Xiao-Wen Gu & Di Liu & Xu Zhang & Hui Wu & Wei Zhou & Guodong Qian & Bin Li, 2023. "Incorporation of multiple supramolecular binding sites into a robust MOF for benchmark one-step ethylene purification," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    19. Charalampos Michalakakis & Jonathan M. Cullen, 2022. "Dynamic exergy analysis: From industrial data to exergy flows," Journal of Industrial Ecology, Yale University, vol. 26(1), pages 12-26, February.
    20. Jalid, Fatima & Khan, Tuhin Suvra & Haider, M. Ali, 2021. "Exploring bimetallic alloy catalysts of Co, Pd and Cu for CO2 reduction combined with ethane dehydrogenation," Applied Energy, Elsevier, vol. 299(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26473-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.