IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i7p2719-2733.html
   My bibliography  Save this article

Towards consistent and reliable Dutch and international energy statistics for the chemical industry

Author

Listed:
  • Neelis, M.L.
  • Pouwelse, J.W.

Abstract

Consistent and reliable energy statistics are of vital importance for proper monitoring of energy-efficiency policies. In recent studies, irregularities have been reported in the Dutch energy statistics for the chemical industry. We studied in depth the company data that form the basis of the energy statistics in the Netherlands between 1995 and 2004 to find causes for these irregularities. We discovered that chemical products have occasionally been included, resulting in statistics with an inconsistent system boundary. Lack of guidance in the survey for the complex energy conversions in the chemical industry in the survey also resulted in large fluctuations for certain energy commodities. The findings of our analysis have been the basis for a new survey that has been used since 2007. We demonstrate that the annual questionnaire used for the international energy statistics can result in comparable problems as observed in the Netherlands. We suggest to include chemical residual gas as energy commodity in the questionnaire and to include the energy conversions in the chemical industry in the international energy statistics. In addition, we think the questionnaire should be explicit about the treatment of basic chemical products produced at refineries and in the petrochemical industry to avoid system boundary problems.

Suggested Citation

  • Neelis, M.L. & Pouwelse, J.W., 2008. "Towards consistent and reliable Dutch and international energy statistics for the chemical industry," Energy Policy, Elsevier, vol. 36(7), pages 2719-2733, July.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2719-2733
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00161-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neelis, Maarten & Patel, Martin & Blok, Kornelis & Haije, Wim & Bach, Pieter, 2007. "Approximation of theoretical energy-saving potentials for the petrochemical industry using energy balances for 68 key processes," Energy, Elsevier, vol. 32(7), pages 1104-1123.
    2. Ren, Tao & Patel, Martin & Blok, Kornelis, 2006. "Olefins from conventional and heavy feedstocks: Energy use in steam cracking and alternative processes," Energy, Elsevier, vol. 31(4), pages 425-451.
    3. Farla, Jacco C. M. & Blok, Kornelis, 2001. "The quality of energy intensity indicators for international comparison in the iron and steel industry," Energy Policy, Elsevier, vol. 29(7), pages 523-543, June.
    4. Farla, Jacco C.M & Blok, Kornelis, 2000. "The use of physical indicators for the monitoring of energy intensity developments in the Netherlands, 1980–1995," Energy, Elsevier, vol. 25(7), pages 609-638.
    5. Worrell, E. & Cuelenaere, R.F.A. & Blok, K. & Turkenburg, W.C., 1994. "Energy consumption by industrial processes in the European Union," Energy, Elsevier, vol. 19(11), pages 1113-1129.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hoefnagels, Ric & Banse, Martin & Dornburg, Veronika & Faaij, André, 2013. "Macro-economic impact of large-scale deployment of biomass resources for energy and materials on a national level—A combined approach for the Netherlands," Energy Policy, Elsevier, vol. 59(C), pages 727-744.
    2. Denilson Ferreira & João O. P. Pinto & Luiz E. B. da Silva & Marcio L. M. Kimpara & Luigi Galotto, 2022. "Elaboration of Energy Balance: A Model for the Brazilian States," Energies, MDPI, vol. 15(23), pages 1-17, November.
    3. Weiss, M. & Neelis, M.L. & Zuidberg, M.C. & Patel, M.K., 2008. "Applying bottom-up analysis to identify the system boundaries of non-energy use data in international energy statistics," Energy, Elsevier, vol. 33(11), pages 1609-1622.
    4. Saygin, D. & Worrell, E. & Tam, C. & Trudeau, N. & Gielen, D.J. & Weiss, M. & Patel, M.K., 2012. "Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry," Energy, Elsevier, vol. 44(1), pages 1094-1106.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saygin, D. & Worrell, E. & Patel, M.K. & Gielen, D.J., 2011. "Benchmarking the energy use of energy-intensive industries in industrialized and in developing countries," Energy, Elsevier, vol. 36(11), pages 6661-6673.
    2. Norman, Jonathan B., 2017. "Measuring improvements in industrial energy efficiency: A decomposition analysis applied to the UK," Energy, Elsevier, vol. 137(C), pages 1144-1151.
    3. Groenenberg, Heleen & Blok, Kornelis & van der Sluijs, Jeroen, 2005. "Projection of energy-intensive material production for bottom-up scenario building," Ecological Economics, Elsevier, vol. 53(1), pages 75-99, April.
    4. Changsheng Li & Lei Zhu & Tobias Fleiter, 2014. "Energy Efficiency Potentials in the Chlor-Alkali Sector — A Case Study of Shandong Province in China," Energy & Environment, , vol. 25(3-4), pages 661-686, April.
    5. Schenk, Niels J. & Moll, Henri C., 2007. "The use of physical indicators for industrial energy demand scenarios," Ecological Economics, Elsevier, vol. 63(2-3), pages 521-535, August.
    6. Hammond, G.P. & Norman, J.B., 2012. "Decomposition analysis of energy-related carbon emissions from UK manufacturing," Energy, Elsevier, vol. 41(1), pages 220-227.
    7. Saygin, D. & Worrell, E. & Tam, C. & Trudeau, N. & Gielen, D.J. & Weiss, M. & Patel, M.K., 2012. "Long-term energy efficiency analysis requires solid energy statistics: The case of the German basic chemical industry," Energy, Elsevier, vol. 44(1), pages 1094-1106.
    8. Phylipsen, Dian & Blok, Kornelis & Worrell, Ernst & Beer, Jeroen de, 2002. "Benchmarking the energy efficiency of Dutch industry: an assessment of the expected effect on energy consumption and CO2 emissions," Energy Policy, Elsevier, vol. 30(8), pages 663-679, June.
    9. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    10. Jiao, Shouhui & Wang, Feng & Wang, Lili & Biney, Bernard Wiafe & Liu, He & Chen, Kun & Guo, Aijun & Sun, Lanyi & Wang, Zongxian, 2022. "Systematic identification and distribution analysis of olefins in FCC slurry oil," Energy, Elsevier, vol. 239(PA).
    11. Hong, Gui-Bing & Ma, Chih-Ming & Chen, Hua-Wei & Chuang, Kai-Jen & Chang, Chang-Tang & Su, Te-Li, 2011. "Energy flow analysis in pulp and paper industry," Energy, Elsevier, vol. 36(5), pages 3063-3068.
    12. Jin, Taeyoung, 2022. "Impact of heat and electricity consumption on energy intensity: A panel data analysis," Energy, Elsevier, vol. 239(PA).
    13. Huang, Yun-Hsun & Chang, Yi-Lin & Fleiter, Tobias, 2016. "A critical analysis of energy efficiency improvement potentials in Taiwan's cement industry," Energy Policy, Elsevier, vol. 96(C), pages 14-26.
    14. Borjesson, Pal & Gustavsson, Leif, 2000. "Greenhouse gas balances in building construction: wood versus concrete from life-cycle and forest land-use perspectives," Energy Policy, Elsevier, vol. 28(9), pages 575-588, July.
    15. Schlomann, Barbara & Reuter, Matthias & Lapillonne, Bruno & Pollier, Karine & Rosenow, Jan, 2014. "Monitoring of the "Energiewende": Energy efficiency indicators for Germany," Working Papers "Sustainability and Innovation" S10/2014, Fraunhofer Institute for Systems and Innovation Research (ISI).
    16. Meerman, J.C. & Ramírez, A. & Turkenburg, W.C. & Faaij, A.P.C., 2011. "Performance of simulated flexible integrated gasification polygeneration facilities. Part A: A technical-energetic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 2563-2587, August.
    17. Sai Chen & Ran Luo & Zhi-Jian Zhao & Chunlei Pei & Yiyi Xu & Zhenpu Lu & Chengjie Zhao & Hongbo Song & Jinlong Gong, 2023. "Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    18. Schwob, Marcelo Rousseau Valença & Henriques Jr., Maurício & Szklo, Alexandre, 2009. "Technical potential for developing natural gas use in the Brazilian red ceramic industry," Applied Energy, Elsevier, vol. 86(9), pages 1524-1531, September.
    19. Haribal, Vasudev Pralhad & Neal, Luke M. & Li, Fanxing, 2017. "Oxidative dehydrogenation of ethane under a cyclic redox scheme – Process simulations and analysis," Energy, Elsevier, vol. 119(C), pages 1024-1035.
    20. Fernández González, P. & Landajo, M. & Presno, M.J., 2014. "Tracking European Union CO2 emissions through LMDI (logarithmic-mean Divisia index) decomposition. The activity revaluation approach," Energy, Elsevier, vol. 73(C), pages 741-750.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2719-2733. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.