IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v580y2020i7805d10.1038_s41586-020-2211-2.html
   My bibliography  Save this article

Electrical manipulation of a topological antiferromagnetic state

Author

Listed:
  • Hanshen Tsai

    (University of Tokyo
    CREST, Japan Science and Technology Agency)

  • Tomoya Higo

    (University of Tokyo
    CREST, Japan Science and Technology Agency)

  • Kouta Kondou

    (CREST, Japan Science and Technology Agency
    RIKEN)

  • Takuya Nomoto

    (CREST, Japan Science and Technology Agency
    University of Tokyo)

  • Akito Sakai

    (University of Tokyo
    CREST, Japan Science and Technology Agency)

  • Ayuko Kobayashi

    (University of Tokyo)

  • Takafumi Nakano

    (CREST, Japan Science and Technology Agency
    National Institute of Advanced Industrial Science and Technology (AIST))

  • Kay Yakushiji

    (CREST, Japan Science and Technology Agency
    National Institute of Advanced Industrial Science and Technology (AIST))

  • Ryotaro Arita

    (CREST, Japan Science and Technology Agency
    RIKEN
    University of Tokyo)

  • Shinji Miwa

    (University of Tokyo
    CREST, Japan Science and Technology Agency
    University of Tokyo)

  • Yoshichika Otani

    (University of Tokyo
    CREST, Japan Science and Technology Agency
    RIKEN
    University of Tokyo)

  • Satoru Nakatsuji

    (University of Tokyo
    CREST, Japan Science and Technology Agency
    University of Tokyo
    University of Tokyo)

Abstract

Electrical manipulation of phenomena generated by nontrivial band topology is essential for the development of next-generation technology using topological protection. A Weyl semimetal is a three-dimensional gapless system that hosts Weyl fermions as low-energy quasiparticles1–4. It has various exotic properties, such as a large anomalous Hall effect (AHE) and chiral anomaly, which are robust owing to the topologically protected Weyl nodes1–16. To manipulate such phenomena, a magnetic version of Weyl semimetals would be useful for controlling the locations of Weyl nodes in the Brillouin zone. Moreover, electrical manipulation of antiferromagnetic Weyl metals would facilitate the use of antiferromagnetic spintronics to realize high-density devices with ultrafast operation17,18. However, electrical control of a Weyl metal has not yet been reported. Here we demonstrate the electrical switching of a topological antiferromagnetic state and its detection by the AHE at room temperature in a polycrystalline thin film19 of the antiferromagnetic Weyl metal Mn3Sn9,10,12,20, which exhibits zero-field AHE. Using bilayer devices composed of Mn3Sn and nonmagnetic metals, we find that an electrical current density of about 1010 to 1011 amperes per square metre induces magnetic switching in the nonmagnetic metals, with a large change in Hall voltage. In addition, the current polarity along the bias field and the sign of the spin Hall angle of the nonmagnetic metals—positive for Pt (ref. 21), close to 0 for Cu and negative for W (ref. 22)—determines the sign of the Hall voltage. Notably, the electrical switching in the antiferromagnet is achieved with the same protocol as that used for ferromagnetic metals23,24. Our results may lead to further scientific and technological advances in topological magnetism and antiferromagnetic spintronics.

Suggested Citation

  • Hanshen Tsai & Tomoya Higo & Kouta Kondou & Takuya Nomoto & Akito Sakai & Ayuko Kobayashi & Takafumi Nakano & Kay Yakushiji & Ryotaro Arita & Shinji Miwa & Yoshichika Otani & Satoru Nakatsuji, 2020. "Electrical manipulation of a topological antiferromagnetic state," Nature, Nature, vol. 580(7805), pages 608-613, April.
  • Handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2211-2
    DOI: 10.1038/s41586-020-2211-2
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41586-020-2211-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41586-020-2211-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yunfeng You & Hua Bai & Xiaoyu Feng & Xiaolong Fan & Lei Han & Xiaofeng Zhou & Yongjian Zhou & Ruiqi Zhang & Tongjin Chen & Feng Pan & Cheng Song, 2021. "Cluster magnetic octupole induced out-of-plane spin polarization in antiperovskite antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    2. Pingfan Gu & Cong Wang & Dan Su & Zehao Dong & Qiuyuan Wang & Zheng Han & Kenji Watanabe & Takashi Taniguchi & Wei Ji & Young Sun & Yu Ye, 2023. "Multi-state data storage in a two-dimensional stripy antiferromagnet implemented by magnetoelectric effect," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    3. Rafael González-Hernández & Philipp Ritzinger & Karel Výborný & Jakub Železný & Aurélien Manchon, 2024. "Non-relativistic torque and Edelstein effect in non-collinear magnets," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Cheng-Hsiang Hsu & Miela J. Gross & Hannah Calzi Kleidermacher & Shehrin Sayed & Sayeef Salahuddin, 2024. "Tunable multistate field-free switching and ratchet effect by spin-orbit torque in canted ferrimagnetic alloy," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Zhenyi Zheng & Tao Zeng & Tieyang Zhao & Shu Shi & Lizhu Ren & Tongtong Zhang & Lanxin Jia & Youdi Gu & Rui Xiao & Hengan Zhou & Qihan Zhang & Jiaqi Lu & Guilei Wang & Chao Zhao & Huihui Li & Beng Kan, 2024. "Effective electrical manipulation of a topological antiferromagnet by orbital torques," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    6. Kouta Kondou & Hua Chen & Takahiro Tomita & Muhammad Ikhlas & Tomoya Higo & Allan H. MacDonald & Satoru Nakatsuji & YoshiChika Otani, 2021. "Giant field-like torque by the out-of-plane magnetic spin Hall effect in a topological antiferromagnet," Nature Communications, Nature, vol. 12(1), pages 1-8, December.
    7. Hao Wu & Hantao Zhang & Baomin Wang & Felix Groß & Chao-Yao Yang & Gengfei Li & Chenyang Guo & Haoran He & Kin Wong & Di Wu & Xiufeng Han & Chih-Huang Lai & Joachim Gräfe & Ran Cheng & Kang L. Wang, 2022. "Current-induced Néel order switching facilitated by magnetic phase transition," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    8. Mingxing Wu & Taishi Chen & Takuya Nomoto & Yaroslav Tserkovnyak & Hironari Isshiki & Yoshinobu Nakatani & Tomoya Higo & Takahiro Tomita & Kouta Kondou & Ryotaro Arita & Satoru Nakatsuji & Yoshichika , 2024. "Current-driven fast magnetic octupole domain-wall motion in noncollinear antiferromagnets," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    9. Hang Xie & Xin Chen & Qi Zhang & Zhiqiang Mu & Xinhai Zhang & Binghai Yan & Yihong Wu, 2022. "Magnetization switching in polycrystalline Mn3Sn thin film induced by self-generated spin-polarized current," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    10. Chung-Tao Chou & Supriya Ghosh & Brooke C. McGoldrick & Thanh Nguyen & Gautam Gurung & Evgeny Y. Tsymbal & Mingda Li & K. Andre Mkhoyan & Luqiao Liu, 2024. "Large Spin Polarization from symmetry-breaking Antiferromagnets in Antiferromagnetic Tunnel Junctions," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    11. Yongjian Zhou & Liyang Liao & Tingwen Guo & Hua Bai & Mingkun Zhao & Caihua Wan & Lin Huang & Lei Han & Leilei Qiao & Yunfeng You & Chong Chen & Ruyi Chen & Zhiyuan Zhou & Xiufeng Han & Feng Pan & Che, 2022. "Orthogonal interlayer coupling in an all-antiferromagnetic junction," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    12. Qingkai Meng & Jianting Dong & Pan Nie & Liangcai Xu & Jinhua Wang & Shan Jiang & Huakun Zuo & Jia Zhang & Xiaokang Li & Zengwei Zhu & Leon Balents & Kamran Behnia, 2024. "Magnetostriction, piezomagnetism and domain nucleation in a Kagome antiferromagnet," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    13. Hidetoshi Masuda & Takeshi Seki & Jun-ichiro Ohe & Yoichi Nii & Hiroto Masuda & Koki Takanashi & Yoshinori Onose, 2024. "Room temperature chirality switching and detection in a helimagnetic MnAu2 thin film," Nature Communications, Nature, vol. 15(1), pages 1-8, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:580:y:2020:i:7805:d:10.1038_s41586-020-2211-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.