IDEAS home Printed from https://ideas.repec.org/a/plo/pone00/0042341.html
   My bibliography  Save this article

Optimized PCR Conditions and Increased shRNA Fold Representation Improve Reproducibility of Pooled shRNA Screens

Author

Listed:
  • Žaklina Strezoska
  • Abel Licon
  • Josh Haimes
  • Katie Jansen Spayd
  • Kruti M Patel
  • Kevin Sullivan
  • Katarzyna Jastrzebski
  • Kaylene J Simpson
  • Devin Leake
  • Anja van Brabant Smith
  • Annaleen Vermeulen

Abstract

RNAi screening using pooled shRNA libraries is a valuable tool for identifying genetic regulators of biological processes. However, for a successful pooled shRNA screen, it is imperative to thoroughly optimize experimental conditions to obtain reproducible data. Here we performed viability screens with a library of ∼10 000 shRNAs at two different fold representations (100- and 500-fold at transduction) and report the reproducibility of shRNA abundance changes between screening replicates determined by microarray and next generation sequencing analyses. We show that the technical reproducibility between PCR replicates from a pooled screen can be drastically improved by ensuring that PCR amplification steps are kept within the exponential phase and by using an amount of genomic DNA input in the reaction that maintains the average template copies per shRNA used during library transduction. Using these optimized PCR conditions, we then show that higher reproducibility of biological replicates is obtained by both microarray and next generation sequencing when screening with higher average shRNA fold representation. shRNAs that change abundance reproducibly in biological replicates (primary hits) are identified from screens performed with both 100- and 500-fold shRNA representation, however a higher percentage of primary hit overlap between screening replicates is obtained from 500-fold shRNA representation screens. While strong hits with larger changes in relative abundance were generally identified in both screens, hits with smaller changes were identified only in the screens performed with the higher shRNA fold representation at transduction.

Suggested Citation

  • Žaklina Strezoska & Abel Licon & Josh Haimes & Katie Jansen Spayd & Kruti M Patel & Kevin Sullivan & Katarzyna Jastrzebski & Kaylene J Simpson & Devin Leake & Anja van Brabant Smith & Annaleen Vermeul, 2012. "Optimized PCR Conditions and Increased shRNA Fold Representation Improve Reproducibility of Pooled shRNA Screens," PLOS ONE, Public Library of Science, vol. 7(8), pages 1-13, August.
  • Handle: RePEc:plo:pone00:0042341
    DOI: 10.1371/journal.pone.0042341
    as

    Download full text from publisher

    File URL: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0042341
    Download Restriction: no

    File URL: https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0042341&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pone.0042341?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Katrien Berns & E. Marielle Hijmans & Jasper Mullenders & Thijn R. Brummelkamp & Arno Velds & Mike Heimerikx & Ron M. Kerkhoven & Mandy Madiredjo & Wouter Nijkamp & Britta Weigelt & Reuven Agami & Wei, 2004. "A large-scale RNAi screen in human cells identifies new components of the p53 pathway," Nature, Nature, vol. 428(6981), pages 431-437, March.
    2. Richard Possemato & Kevin M. Marks & Yoav D. Shaul & Michael E. Pacold & Dohoon Kim & Kıvanç Birsoy & Shalini Sethumadhavan & Hin-Koon Woo & Hyun G. Jang & Abhishek K. Jha & Walter W. Chen & Francesca, 2011. "Functional genomics reveal that the serine synthesis pathway is essential in breast cancer," Nature, Nature, vol. 476(7360), pages 346-350, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Seong Eun Lee & Seongyeol Park & Shinae Yi & Na Rae Choi & Mi Ae Lim & Jae Won Chang & Ho-Ryun Won & Je Ryong Kim & Hye Mi Ko & Eun-Jae Chung & Young Joo Park & Sun Wook Cho & Hyeong Won Yu & June You, 2024. "Unraveling the role of the mitochondrial one-carbon pathway in undifferentiated thyroid cancer by multi-omics analyses," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    2. Camilla Tombari & Alessandro Zannini & Rebecca Bertolio & Silvia Pedretti & Matteo Audano & Luca Triboli & Valeria Cancila & Davide Vacca & Manuel Caputo & Sara Donzelli & Ilenia Segatto & Simone Vodr, 2023. "Mutant p53 sustains serine-glycine synthesis and essential amino acids intake promoting breast cancer growth," Nature Communications, Nature, vol. 14(1), pages 1-21, December.
    3. Gabrielle Manteaux & Alix Amsel & Blanche Riquier-Morcant & Jaime Prieto Romero & Laurie Gayte & Benjamin Fourneaux & Marion Larroque & Nadège Gruel & Chloé Quignot & Gaelle Perot & Solenn Jacq & Madi, 2024. "A metabolic crosstalk between liposarcoma and muscle sustains tumor growth," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    4. Tom Nyen & Mélanie Planque & Lilian Wagensveld & Joao A. G. Duarte & Esther A. Zaal & Ali Talebi & Matteo Rossi & Pierre-René Körner & Lara Rizzotto & Stijn Moens & Wout Wispelaere & Regina E. M. Baid, 2022. "Serine metabolism remodeling after platinum-based chemotherapy identifies vulnerabilities in a subgroup of resistant ovarian cancers," Nature Communications, Nature, vol. 13(1), pages 1-19, December.
    5. Nicole Kiweler & Catherine Delbrouck & Vitaly I. Pozdeev & Laura Neises & Leticia Soriano-Baguet & Kim Eiden & Feng Xian & Mohaned Benzarti & Lara Haase & Eric Koncina & Maryse Schmoetten & Christian , 2022. "Mitochondria preserve an autarkic one-carbon cycle to confer growth-independent cancer cell migration and metastasis," Nature Communications, Nature, vol. 13(1), pages 1-17, December.
    6. Kui Wang & Li Luo & Shuyue Fu & Mao Wang & Zihao Wang & Lixia Dong & Xingyun Wu & Lunzhi Dai & Yong Peng & Guobo Shen & Hai-Ning Chen & Edouard Collins Nice & Xiawei Wei & Canhua Huang, 2023. "PHGDH arginine methylation by PRMT1 promotes serine synthesis and represents a therapeutic vulnerability in hepatocellular carcinoma," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    7. Emmanuel Benichou & Bolaji Seffou & Selin Topçu & Ophélie Renoult & Véronique Lenoir & Julien Planchais & Caroline Bonner & Catherine Postic & Carina Prip-Buus & Claire Pecqueur & Sandra Guilmeau & Ma, 2024. "The transcription factor ChREBP Orchestrates liver carcinogenesis by coordinating the PI3K/AKT signaling and cancer metabolism," Nature Communications, Nature, vol. 15(1), pages 1-29, December.
    8. Eirini Lionaki & Ilias Gkikas & Ioanna Daskalaki & Maria-Konstantina Ioannidi & Maria I. Klapa & Nektarios Tavernarakis, 2022. "Mitochondrial protein import determines lifespan through metabolic reprogramming and de novo serine biosynthesis," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
    9. Sahar Harati & Lee A D Cooper & Josue D Moran & Felipe O Giuste & Yuhong Du & Andrei A Ivanov & Margaret A Johns & Fadlo R Khuri & Haian Fu & Carlos S Moreno, 2017. "MEDICI: Mining Essentiality Data to Identify Critical Interactions for Cancer Drug Target Discovery and Development," PLOS ONE, Public Library of Science, vol. 12(1), pages 1-18, January.
    10. Marc Hennequart & Christiaan F. Labuschagne & Mylène Tajan & Steven E. Pilley & Eric C. Cheung & Nathalie M. Legrave & Paul C. Driscoll & Karen H. Vousden, 2021. "The impact of physiological metabolite levels on serine uptake, synthesis and utilization in cancer cells," Nature Communications, Nature, vol. 12(1), pages 1-10, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pone00:0042341. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: plosone (email available below). General contact details of provider: https://journals.plos.org/plosone/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.