IDEAS home Printed from https://ideas.repec.org/a/nat/nature/v417y2002i6890d10.1038_nature00790.html
   My bibliography  Save this article

Kondo resonance in a single-molecule transistor

Author

Listed:
  • Wenjie Liang

    (Harvard University)

  • Matthew P. Shores

    (University of California)

  • Marc Bockrath

    (Harvard University)

  • Jeffrey R. Long

    (University of California)

  • Hongkun Park

    (Harvard University)

Abstract

When an individual molecule1, nanocrystal2,3,4, nanotube5,6 or lithographically defined quantum dot7 is attached to metallic electrodes via tunnel barriers, electron transport is dominated by single-electron charging and energy-level quantization8. As the coupling to the electrodes increases, higher-order tunnelling and correlated electron motion give rise to new phenomena9,10,11,12,13,14,15,16,17,18,19, including the Kondo resonance10,11,12,13,14,15,16. To date, all of the studies of Kondo phenomena in quantum dots have been performed on systems where precise control over the spin degrees of freedom is difficult. Molecules incorporating transition-metal atoms provide powerful new systems in this regard, because the spin and orbital degrees of freedom can be controlled through well-defined chemistry20,21. Here we report the observation of the Kondo effect in single-molecule transistors, where an individual divanadium molecule20 serves as a spin impurity. We find that the Kondo resonance can be tuned reversibly using the gate voltage to alter the charge and spin state of the molecule. The resonance persists at temperatures up to 30 K and when the energy separation between the molecular state and the Fermi level of the metal exceeds 100 meV.

Suggested Citation

  • Wenjie Liang & Matthew P. Shores & Marc Bockrath & Jeffrey R. Long & Hongkun Park, 2002. "Kondo resonance in a single-molecule transistor," Nature, Nature, vol. 417(6890), pages 725-729, June.
  • Handle: RePEc:nat:nature:v:417:y:2002:i:6890:d:10.1038_nature00790
    DOI: 10.1038/nature00790
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nature00790
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nature00790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kenji Shibata & Masaki Yoshida & Kazuhiko Hirakawa & Tomohiro Otsuka & Satria Zulkarnaen Bisri & Yoshihiro Iwasa, 2023. "Single PbS colloidal quantum dot transistors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. R. Žitko & G. G. Blesio & L. O. Manuel & A. A. Aligia, 2021. "Iron phthalocyanine on Au(111) is a “non-Landau” Fermi liquid," Nature Communications, Nature, vol. 12(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:nature:v:417:y:2002:i:6890:d:10.1038_nature00790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.