IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26165-3.html
   My bibliography  Save this article

Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis

Author

Listed:
  • Natalie M. Clark

    (Iowa State University)

  • Trevor M. Nolan

    (Iowa State University
    Duke University)

  • Ping Wang

    (Iowa State University)

  • Gaoyuan Song

    (Iowa State University)

  • Christian Montes

    (Iowa State University)

  • Conner T. Valentine

    (Iowa State University)

  • Hongqing Guo

    (Iowa State University)

  • Rosangela Sozzani

    (North Carolina State University)

  • Yanhai Yin

    (Iowa State University)

  • Justin W. Walley

    (Iowa State University)

Abstract

Brassinosteroids (BRs) are plant steroid hormones that regulate cell division and stress response. Here we use a systems biology approach to integrate multi-omic datasets and unravel the molecular signaling events of BR response in Arabidopsis. We profile the levels of 26,669 transcripts, 9,533 protein groups, and 26,617 phosphorylation sites from Arabidopsis seedlings treated with brassinolide (BL) for six different lengths of time. We then construct a network inference pipeline called Spatiotemporal Clustering and Inference of Omics Networks (SC-ION) to integrate these data. We use our network predictions to identify putative phosphorylation sites on BES1 and experimentally validate their importance. Additionally, we identify BRONTOSAURUS (BRON) as a transcription factor that regulates cell division, and we show that BRON expression is modulated by BR-responsive kinases and transcription factors. This work demonstrates the power of integrative network analysis applied to multi-omic data and provides fundamental insights into the molecular signaling events occurring during BR response.

Suggested Citation

  • Natalie M. Clark & Trevor M. Nolan & Ping Wang & Gaoyuan Song & Christian Montes & Conner T. Valentine & Hongqing Guo & Rosangela Sozzani & Yanhai Yin & Justin W. Walley, 2021. "Integrated omics networks reveal the temporal signaling events of brassinosteroid response in Arabidopsis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26165-3
    DOI: 10.1038/s41467-021-26165-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26165-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26165-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vân Anh Huynh-Thu & Alexandre Irrthum & Louis Wehenkel & Pierre Geurts, 2010. "Inferring Regulatory Networks from Expression Data Using Tree-Based Methods," PLOS ONE, Public Library of Science, vol. 5(9), pages 1-10, September.
    2. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    3. Natalie M. Clark & Eli Buckner & Adam P. Fisher & Emily C. Nelson & Thomas T. Nguyen & Abigail R. Simmons & Maria A. Luis Balaguer & Tiara Butler-Smith & Parnell J. Sheldon & Dominique C. Bergmann & C, 2019. "Stem-cell-ubiquitous genes spatiotemporally coordinate division through regulation of stem-cell-specific gene networks," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    4. Moysés Nascimento & Fabyano Fonseca e Silva & Thelma Sáfadi & Ana Carolina Campana Nascimento & Talles Eduardo Maciel Ferreira & Laís Mayara Azevedo Barroso & Camila Ferreira Azevedo & Simone Eliza Fa, 2017. "Independent Component Analysis (ICA) based-clustering of temporal RNA-seq data," PLOS ONE, Public Library of Science, vol. 12(7), pages 1-12, July.
    5. Huaxun Ye & Sanzhen Liu & Buyun Tang & Jiani Chen & Zhouli Xie & Trevor M. Nolan & Hao Jiang & Hongqing Guo & Hung-Ying Lin & Lei Li & Yanqun Wang & Hongning Tong & Mingcai Zhang & Chengcai Chu & Zhao, 2017. "RD26 mediates crosstalk between drought and brassinosteroid signalling pathways," Nature Communications, Nature, vol. 8(1), pages 1-13, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xi Wang & Juan Li & Linqian Han & Chengyong Liang & Jiaxin Li & Xiaoyang Shang & Xinxin Miao & Zi Luo & Wanchao Zhu & Zhao Li & Tianhuan Li & Yongwen Qi & Huihui Li & Xiaoduo Lu & Lin Li, 2023. "QTG-Miner aids rapid dissection of the genetic base of tassel branch number in maize," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    2. Teng Jing & Yuying Wu & Yanwen Yu & Jiankun Li & Xiaohuan Mu & Liping Xu & Xi Wang & Guang Qi & Jihua Tang & Daowen Wang & Shuhua Yang & Jian Hua & Mingyue Gou, 2024. "Copine proteins are required for brassinosteroid signaling in maize and Arabidopsis," Nature Communications, Nature, vol. 15(1), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    2. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    3. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    4. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    5. Krzysztof Dmytrow & Beata Bieszk-Stolorz, 2021. "Comparison of changes in the labour markets of post-communist countries with other EU member states," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 741-764, December.
    6. Yangchen Di & Mingyue Lu & Min Chen & Zhangjian Chen & Zaiyang Ma & Manzhu Yu, 2022. "A quantitative method for the similarity assessment of typhoon tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 587-602, May.
    7. Cecilia Pessoa Rodrigues & Aindrila Chatterjee & Meike Wiese & Thomas Stehle & Witold Szymanski & Maria Shvedunova & Asifa Akhtar, 2021. "Histone H4 lysine 16 acetylation controls central carbon metabolism and diet-induced obesity in mice," Nature Communications, Nature, vol. 12(1), pages 1-21, December.
    8. Jie Xiong & Tong Zhou, 2012. "Gene Regulatory Network Inference from Multifactorial Perturbation Data Using both Regression and Correlation Analyses," PLOS ONE, Public Library of Science, vol. 7(9), pages 1-13, September.
    9. Marco Grimaldi & Roberto Visintainer & Giuseppe Jurman, 2011. "RegnANN: Reverse Engineering Gene Networks Using Artificial Neural Networks," PLOS ONE, Public Library of Science, vol. 6(12), pages 1-19, December.
    10. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    11. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    12. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    13. Marius Arend & Yizhong Yuan & M. Águila Ruiz-Sola & Nooshin Omranian & Zoran Nikoloski & Dimitris Petroutsos, 2023. "Widening the landscape of transcriptional regulation of green algal photoprotection," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    14. Krzysztof Dmytrów & Joanna Landmesser & Beata Bieszk-Stolorz, 2021. "The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method," Energies, MDPI, vol. 14(13), pages 1-23, July.
    15. Takeshi Hase & Samik Ghosh & Ryota Yamanaka & Hiroaki Kitano, 2013. "Harnessing Diversity towards the Reconstructing of Large Scale Gene Regulatory Networks," PLOS Computational Biology, Public Library of Science, vol. 9(11), pages 1-16, November.
    16. Ruonan Wu & Michelle R. Davison & William C. Nelson & Montana L. Smith & Mary S. Lipton & Janet K. Jansson & Ryan S. McClure & Jason E. McDermott & Kirsten S. Hofmockel, 2023. "Hi-C metagenome sequencing reveals soil phage–host interactions," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    17. Roberto Benedetti & Federica Piersimoni & Giacomo Pignataro & Francesco Vidoli, 2020. "Identification of spatially constrained homogeneous clusters of COVID‐19 transmission in Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1169-1187, December.
    18. Kinzy Tyler G. & Starr Timothy K. & Tseng George C. & Ho Yen-Yi, 2019. "Meta-analytic framework for modeling genetic coexpression dynamics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 18(1), pages 1-13, February.
    19. Iason Sideris & Francesco Crivelli & Markus Bambach, 2023. "GPyro: uncertainty-aware temperature predictions for additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 243-259, January.
    20. Parisa Niloofar & Sanja Lazarova-Molnar, 2023. "Collaborative data-driven reliability analysis of multi-state fault trees," Journal of Risk and Reliability, , vol. 237(5), pages 886-896, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26165-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.