Author
Listed:
- Yu Chang
(Huazhong Agricultural University
Huazhong Agricultural University)
- Yujie Fang
(Yangzhou University)
- Jiahan Liu
(Huazhong Agricultural University
Huazhong Agricultural University)
- Tiantian Ye
(Huazhong Agricultural University
Huazhong Agricultural University)
- Xiaokai Li
(Huazhong Agricultural University
Huazhong Agricultural University)
- Haifu Tu
(Huazhong Agricultural University
Huazhong Agricultural University)
- Ying Ye
(Huazhong Agricultural University
Huazhong Agricultural University)
- Yao Wang
(Huazhong Agricultural University
Huazhong Agricultural University)
- Lizhong Xiong
(Huazhong Agricultural University
Huazhong Agricultural University)
Abstract
Drought and heat are major abiotic stresses frequently coinciding to threaten rice production. Despite hundreds of stress-related genes being identified, only a few have been confirmed to confer resistance to multiple stresses in crops. Here we report ONAC023, a hub stress regulator that integrates the regulations of both drought and heat tolerance in rice. ONAC023 positively regulates drought and heat tolerance at both seedling and reproductive stages. Notably, the functioning of ONAC023 is obliterated without stress treatment and can be triggered by drought and heat stresses at two layers. The expression of ONAC023 is induced in response to stress stimuli. We show that overexpressed ONAC23 is translocated to the nucleus under stress and evidence from protoplasts suggests that the dephosphorylation of the remorin protein OSREM1.5 can promote this translocation. Under drought or heat stress, the nuclear ONAC023 can target and promote the expression of diverse genes, such as OsPIP2;7, PGL3, OsFKBP20-1b, and OsSF3B1, which are involved in various processes including water transport, reactive oxygen species homeostasis, and alternative splicing. These results manifest that ONAC023 is fine-tuned to positively regulate drought and heat tolerance through the integration of multiple stress-responsive processes. Our findings provide not only an underlying connection between drought and heat responses, but also a promising candidate for engineering multi-stress-resilient rice.
Suggested Citation
Yu Chang & Yujie Fang & Jiahan Liu & Tiantian Ye & Xiaokai Li & Haifu Tu & Ying Ye & Yao Wang & Lizhong Xiong, 2024.
"Stress-induced nuclear translocation of ONAC023 improves drought and heat tolerance through multiple processes in rice,"
Nature Communications, Nature, vol. 15(1), pages 1-21, December.
Handle:
RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50229-9
DOI: 10.1038/s41467-024-50229-9
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-50229-9. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.