IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v15y2022i13p4789-d851837.html
   My bibliography  Save this article

Renewable Energy Community Pairing Methodology Using Statistical Learning Applied to Georeferenced Energy Profiles

Author

Listed:
  • Alexandre Lucas

    (INESC Technology and Science (INESC TEC), 4200-465 Porto, Portugal)

  • Salvador Carvalhosa

    (INESC Technology and Science (INESC TEC), 4200-465 Porto, Portugal)

Abstract

Renewable energy communities (REC) are bound to play a crucial role in the energy transition, as their role, activities, and legal forms become clearer, and their dissemination becomes larger. Even though their mass grid integration, is regarded with high expectations, their diffusion, however, has not been an easy task. Its legal form and success, entail responsibilities, prospects, trust, and synergies to be explored between its members, whose collective dynamics should aim for optimal operation. In this regard, the pairing methodology of potential participants ahead of asset dimensioning seems to have been overlooked. This article presents a methodology for pairing consumers, based on their georeferenced load consumptions. A case study in an area of Porto (Asprela) was used to test the methodology. QGIS is used as a geo-representation tool and its PlanHeat plugin for district characterization support. A supervised statistical learning approach is used to identify the feature importance of an overall district energy consumption profile. With the main variables identified, the methodology applies standard K-means and Dynamic Time Warping clustering, from which, users from different clusters should be paired to explore PV as the main generation asset. To validate the assumption that this complementarity of load diagrams could decrease the total surplus of a typical PV generation, 18 pairings were tested. Results show that, even though it is not true that all pairings from different clusters lead to lower surplus, on average, this seems to be the trend. From the sample analyzed a maximum of 36% and an average of 12% less PV surplus generation is observed.

Suggested Citation

  • Alexandre Lucas & Salvador Carvalhosa, 2022. "Renewable Energy Community Pairing Methodology Using Statistical Learning Applied to Georeferenced Energy Profiles," Energies, MDPI, vol. 15(13), pages 1-16, June.
  • Handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4789-:d:851837
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/15/13/4789/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/15/13/4789/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Giorgino, Toni, 2009. "Computing and Visualizing Dynamic Time Warping Alignments in R: The dtw Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 31(i07).
    2. Saveria Olga Murielle Boulanger & Martina Massari & Danila Longo & Beatrice Turillazzi & Carlo Alberto Nucci, 2021. "Designing Collaborative Energy Communities: A European Overview," Energies, MDPI, vol. 14(24), pages 1-17, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amato, Umberto & Antoniadis, Anestis & De Feis, Italia & Goude, Yannig & Lagache, Audrey, 2021. "Forecasting high resolution electricity demand data with additive models including smooth and jagged components," International Journal of Forecasting, Elsevier, vol. 37(1), pages 171-185.
    2. Mastroeni, Loretta & Mazzoccoli, Alessandro & Quaresima, Greta & Vellucci, Pierluigi, 2021. "Decoupling and recoupling in the crude oil price benchmarks: An investigation of similarity patterns," Energy Economics, Elsevier, vol. 94(C).
    3. Christoph J. Borner & Ingo Hoffmann & Jonas Krettek & Lars M. Kurzinger & Tim Schmitz, 2021. "Bitcoin: Like a Satellite or Always Hardcore? A Core-Satellite Identification in the Cryptocurrency Market," Papers 2105.12336, arXiv.org.
    4. Hanjo Odendaal & Monique Reid & Johann F. Kirsten, 2020. "Media‐Based Sentiment Indices as an Alternative Measure of Consumer Confidence," South African Journal of Economics, Economic Society of South Africa, vol. 88(4), pages 409-434, December.
    5. Krzysztof Dmytrow & Beata Bieszk-Stolorz, 2021. "Comparison of changes in the labour markets of post-communist countries with other EU member states," Equilibrium. Quarterly Journal of Economics and Economic Policy, Institute of Economic Research, vol. 16(4), pages 741-764, December.
    6. Yangchen Di & Mingyue Lu & Min Chen & Zhangjian Chen & Zaiyang Ma & Manzhu Yu, 2022. "A quantitative method for the similarity assessment of typhoon tracks," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 112(1), pages 587-602, May.
    7. Myriam Caratù & Valerio Brescia & Ilaria Pigliautile & Paolo Biancone, 2023. "Assessing Energy Communities’ Awareness on Social Media with a Content and Sentiment Analysis," Sustainability, MDPI, vol. 15(8), pages 1-28, April.
    8. De Gregorio, Alessandro & Maria Iacus, Stefano, 2010. "Clustering of discretely observed diffusion processes," Computational Statistics & Data Analysis, Elsevier, vol. 54(2), pages 598-606, February.
    9. Szczepocki Piotr, 2019. "Clustering Companies Listed on the Warsaw Stock Exchange According to Time-Varying Beta," Econometrics. Advances in Applied Data Analysis, Sciendo, vol. 23(2), pages 63-79, June.
    10. Anita De Franco & Elisabetta Venco & Roberto De Lotto & Caterina Pietra & Florian Kutzner & Mona Bielig & Melanie Vogel, 2023. "Drivers, Motivations, and Barriers in the Creation of Energy Communities: Insights from the City of Segrate, Italy," Energies, MDPI, vol. 16(16), pages 1-13, August.
    11. Sokhna Dieng & Pierre Michel & Abdoulaye Guindo & Kankoe Sallah & El-Hadj Ba & Badara Cissé & Maria Patrizia Carrieri & Cheikh Sokhna & Paul Milligan & Jean Gaudart, 2020. "Application of Functional Data Analysis to Identify Patterns of Malaria Incidence, to Guide Targeted Control Strategies," IJERPH, MDPI, vol. 17(11), pages 1-23, June.
    12. Krzysztof Dmytrów & Joanna Landmesser & Beata Bieszk-Stolorz, 2021. "The Connections between COVID-19 and the Energy Commodities Prices: Evidence through the Dynamic Time Warping Method," Energies, MDPI, vol. 14(13), pages 1-23, July.
    13. Alyssa Diva Mustika & Rémy Rigo-Mariani & Vincent Debusschere & Amaury Pachurka, 2022. "New Members Selection for the Expansion of Energy Communities," Sustainability, MDPI, vol. 14(18), pages 1-15, September.
    14. Roberto Benedetti & Federica Piersimoni & Giacomo Pignataro & Francesco Vidoli, 2020. "Identification of spatially constrained homogeneous clusters of COVID‐19 transmission in Italy," Regional Science Policy & Practice, Wiley Blackwell, vol. 12(6), pages 1169-1187, December.
    15. Iason Sideris & Francesco Crivelli & Markus Bambach, 2023. "GPyro: uncertainty-aware temperature predictions for additive manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 34(1), pages 243-259, January.
    16. Parisa Niloofar & Sanja Lazarova-Molnar, 2023. "Collaborative data-driven reliability analysis of multi-state fault trees," Journal of Risk and Reliability, , vol. 237(5), pages 886-896, October.
    17. Paola Marrone & Federico Fiume & Antonino Laudani & Ilaria Montella & Martina Palermo & Francesco Riganti Fulginei, 2023. "Distributed Energy Systems: Constraints and Opportunities in Urban Environments," Energies, MDPI, vol. 16(6), pages 1-27, March.
    18. Orman, Günce Keziban & Labatut, Vincent & Naskali, Ahmet Teoman, 2017. "Exploring the evolution of node neighborhoods in Dynamic Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 375-391.
    19. Beste Hamiye Beyaztas & Ufuk Beyaztas & Soutir Bandyopadhyay & Wei-Min Huang, 2018. "New and Fast Block Bootstrap-Based Prediction Intervals for GARCH(1,1) Process with Application to Exchange Rates," Sankhya A: The Indian Journal of Statistics, Springer;Indian Statistical Institute, vol. 80(1), pages 168-194, February.
    20. Yiyu Li & Qingxu Huang & Ling Zhang & Jian Li & Yingfei Sui & Weichen Zhang, 2022. "Dynamics of Urban Land per Capita in China from 2000 to 2016," Land, MDPI, vol. 12(1), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:15:y:2022:i:13:p:4789-:d:851837. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.