IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-26098-x.html
   My bibliography  Save this article

Temporal evolution of master regulator Crp identifies pyrimidines as catabolite modulator factors

Author

Listed:
  • Ida Lauritsen

    (Technical University of Denmark)

  • Pernille Ott Frendorf

    (Technical University of Denmark)

  • Silvia Capucci

    (Technical University of Denmark)

  • Sophia A. H. Heyde

    (Technical University of Denmark)

  • Sarah D. Blomquist

    (Technical University of Denmark)

  • Sofie Wendel

    (Technical University of Denmark)

  • Emil C. Fischer

    (Technical University of Denmark)

  • Agnieszka Sekowska

    (Kodikos Labs, Institut Cochin)

  • Antoine Danchin

    (Kodikos Labs, Institut Cochin)

  • Morten H. H. Nørholm

    (Technical University of Denmark)

Abstract

The evolution of microorganisms often involves changes of unclear relevance, such as transient phenotypes and sequential development of multiple adaptive mutations in hotspot genes. Previously, we showed that ageing colonies of an E. coli mutant unable to produce cAMP when grown on maltose, accumulated mutations in the crp gene (encoding a global transcription factor) and in genes involved in pyrimidine metabolism such as cmk; combined mutations in both crp and cmk enabled fermentation of maltose (which usually requires cAMP-mediated Crp activation for catabolic pathway expression). Here, we study the sequential generation of hotspot mutations in those genes, and uncover a regulatory role of pyrimidine nucleosides in carbon catabolism. Cytidine binds to the cytidine regulator CytR, modifies the expression of sigma factor 32 (RpoH), and thereby impacts global gene expression. In addition, cytidine binds and activates a Crp mutant directly, thus modulating catabolic pathway expression, and could be the catabolite modulating factor whose existence was suggested by Jacques Monod and colleagues in 1976. Therefore, transcription factor Crp appears to work in concert with CytR and RpoH, serving a dual role in sensing both carbon availability and metabolic flux towards DNA and RNA. Our findings show how certain alterations in metabolite concentrations (associated with colony ageing and/or due to mutations in metabolic or regulatory genes) can drive the evolution in non-growing cells.

Suggested Citation

  • Ida Lauritsen & Pernille Ott Frendorf & Silvia Capucci & Sophia A. H. Heyde & Sarah D. Blomquist & Sofie Wendel & Emil C. Fischer & Agnieszka Sekowska & Antoine Danchin & Morten H. H. Nørholm, 2021. "Temporal evolution of master regulator Crp identifies pyrimidines as catabolite modulator factors," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26098-x
    DOI: 10.1038/s41467-021-26098-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-26098-x
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-26098-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin Lempp & Niklas Farke & Michelle Kuntz & Sven Andreas Freibert & Roland Lill & Hannes Link, 2019. "Systematic identification of metabolites controlling gene expression in E. coli," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    2. Conghui You & Hiroyuki Okano & Sheng Hui & Zhongge Zhang & Minsu Kim & Carl W. Gunderson & Yi-Ping Wang & Peter Lenz & Dalai Yan & Terence Hwa, 2013. "Coordination of bacterial proteome with metabolism by cyclic AMP signalling," Nature, Nature, vol. 500(7462), pages 301-306, August.
    3. Jeffrey E. Barrick & Dong Su Yu & Sung Ho Yoon & Haeyoung Jeong & Tae Kwang Oh & Dominique Schneider & Richard E. Lenski & Jihyun F. Kim, 2009. "Genome evolution and adaptation in a long-term experiment with Escherichia coli," Nature, Nature, vol. 461(7268), pages 1243-1247, October.
    4. Marshall Louis Reaves & Brian D. Young & Aaron M. Hosios & Yi-Fan Xu & Joshua D. Rabinowitz, 2013. "Pyrimidine homeostasis is accomplished by directed overflow metabolism," Nature, Nature, vol. 500(7461), pages 237-241, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Matteo Mori & Vadim Patsalo & Christian Euler & James R. Williamson & Matthew Scott, 2024. "Proteome partitioning constraints in long-term laboratory evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Manlu Zhu & Yiheng Wang & Haoyan Mu & Fei Han & Qian Wang & Yongfu Pei & Xin Wang & Xiongfeng Dai, 2024. "Plasmid-encoded phosphatase RapP enhances cell growth in non-domesticated Bacillus subtilis strains," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    3. Daphna Rothschild & Erez Dekel & Jean Hausser & Anat Bren & Guy Aidelberg & Pablo Szekely & Uri Alon, 2014. "Linear Superposition and Prediction of Bacterial Promoter Activity Dynamics in Complex Conditions," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-9, May.
    4. Ryo Mizuuchi & Taro Furubayashi & Norikazu Ichihashi, 2022. "Evolutionary transition from a single RNA replicator to a multiple replicator network," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    5. Uri Barenholz & Leeat Keren & Eran Segal & Ron Milo, 2016. "A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
    6. Simeon D. Castle & Michiel Stock & Thomas E. Gorochowski, 2024. "Engineering is evolution: a perspective on design processes to engineer biology," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    7. Enrico Orsi & Pablo Ivan Nikel & Lars Keld Nielsen & Stefano Donati, 2023. "Synergistic investigation of natural and synthetic C1-trophic microorganisms to foster a circular carbon economy," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Linyue Zhang & Edward King & William B. Black & Christian M. Heckmann & Allison Wolder & Youtian Cui & Francis Nicklen & Justin B. Siegel & Ray Luo & Caroline E. Paul & Han Li, 2022. "Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    9. Kevin K. Y. Hu & Ankita Suri & Geoff Dumsday & Victoria S. Haritos, 2024. "Cross-feeding promotes heterogeneity within yeast cell populations," Nature Communications, Nature, vol. 15(1), pages 1-16, December.
    10. Matteo Mori & Chuankai Cheng & Brian R. Taylor & Hiroyuki Okano & Terence Hwa, 2023. "Functional decomposition of metabolism allows a system-level quantification of fluxes and protein allocation towards specific metabolic functions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    11. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    12. Manlu Zhu & Xiongfeng Dai, 2023. "Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    13. Manlu Zhu & Xiongfeng Dai, 2024. "Shaping of microbial phenotypes by trade-offs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    14. Yichao Han & Wanji Li & Alden Filko & Jingyao Li & Fuzhong Zhang, 2023. "Genome-wide promoter responses to CRISPR perturbations of regulators reveal regulatory networks in Escherichia coli," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Gaoyang Li & Li Liu & Wei Du & Huansheng Cao, 2023. "Local flux coordination and global gene expression regulation in metabolic modeling," Nature Communications, Nature, vol. 14(1), pages 1-18, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-26098-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.