IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v15y2024i1d10.1038_s41467-024-48591-9.html
   My bibliography  Save this article

Shaping of microbial phenotypes by trade-offs

Author

Listed:
  • Manlu Zhu

    (Central China Normal University)

  • Xiongfeng Dai

    (Central China Normal University)

Abstract

Growth rate maximization is an important fitness strategy for microbes. However, the wide distribution of slow-growing oligotrophic microbes in ecosystems suggests that rapid growth is often not favored across ecological environments. In many circumstances, there exist trade-offs between growth and other important traits (e.g., adaptability and survival) due to physiological and proteome constraints. Investments on alternative traits could compromise growth rate and microbes need to adopt bet-hedging strategies to improve fitness in fluctuating environments. Here we review the mechanistic role of trade-offs in controlling bacterial growth and further highlight its ecological implications in driving the emergences of many important ecological phenomena such as co-existence, population heterogeneity and oligotrophic/copiotrophic lifestyles.

Suggested Citation

  • Manlu Zhu & Xiongfeng Dai, 2024. "Shaping of microbial phenotypes by trade-offs," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
  • Handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48591-9
    DOI: 10.1038/s41467-024-48591-9
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-024-48591-9
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-024-48591-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Xiao-Pan Hu & Hugo Dourado & Peter Schubert & Martin J. Lercher, 2020. "The protein translation machinery is expressed for maximal efficiency in Escherichia coli," Nature Communications, Nature, vol. 11(1), pages 1-10, December.
    2. Jeremy I. Roop & Kyu Chul Chang & Rachel B. Brem, 2016. "Polygenic evolution of a sugar specialization trade-off in yeast," Nature, Nature, vol. 530(7590), pages 336-339, February.
    3. Ruggero La Rosa & Elio Rossi & Adam M. Feist & Helle Krogh Johansen & Søren Molin, 2021. "Compensatory evolution of Pseudomonas aeruginosa’s slow growth phenotype suggests mechanisms of adaptation in cystic fibrosis," Nature Communications, Nature, vol. 12(1), pages 1-15, December.
    4. Conghui You & Hiroyuki Okano & Sheng Hui & Zhongge Zhang & Minsu Kim & Carl W. Gunderson & Yi-Ping Wang & Peter Lenz & Dalai Yan & Terence Hwa, 2013. "Coordination of bacterial proteome with metabolism by cyclic AMP signalling," Nature, Nature, vol. 500(7462), pages 301-306, August.
    5. David W. Erickson & Severin J. Schink & Vadim Patsalo & James R. Williamson & Ulrich Gerland & Terence Hwa, 2017. "A global resource allocation strategy governs growth transition kinetics of Escherichia coli," Nature, Nature, vol. 551(7678), pages 119-123, November.
    6. Tianjiao Dai & Donghui Wen & Colin T. Bates & Linwei Wu & Xue Guo & Suo Liu & Yifan Su & Jiesi Lei & Jizhong Zhou & Yunfeng Yang, 2022. "Nutrient supply controls the linkage between species abundance and ecological interactions in marine bacterial communities," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    7. Sebastian Gude & Erçağ Pinçe & Katja M. Taute & Anne-Bart Seinen & Thomas S. Shimizu & Sander J. Tans, 2020. "Bacterial coexistence driven by motility and spatial competition," Nature, Nature, vol. 578(7796), pages 588-592, February.
    8. Jen Nguyen & Vicente Fernandez & Sammy Pontrelli & Uwe Sauer & Martin Ackermann & Roman Stocker, 2021. "A distinct growth physiology enhances bacterial growth under rapid nutrient fluctuations," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    9. Manlu Zhu & Xiongfeng Dai, 2023. "Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    10. Declan A. Gray & Gaurav Dugar & Pamela Gamba & Henrik Strahl & Martijs J. Jonker & Leendert W. Hamoen, 2019. "Extreme slow growth as alternative strategy to survive deep starvation in bacteria," Nature Communications, Nature, vol. 10(1), pages 1-12, December.
    11. Avik Mukherjee & Jade Ealy & Yanqing Huang & Nina Catherine Benites & Mark Polk & Markus Basan, 2023. "Coexisting ecotypes in long-term evolution emerged from interacting trade-offs," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    12. Rosemary Yu & Kate Campbell & Rui Pereira & Johan Björkeroth & Qi Qi & Egor Vorontsov & Carina Sihlbom & Jens Nielsen, 2020. "Nitrogen limitation reveals large reserves in metabolic and translational capacities of yeast," Nature Communications, Nature, vol. 11(1), pages 1-12, December.
    13. Robert M. Morris & Michael S. Rappé & Stephanie A. Connon & Kevin L. Vergin & William A. Siebold & Craig A. Carlson & Stephen J. Giovannoni, 2002. "SAR11 clade dominates ocean surface bacterioplankton communities," Nature, Nature, vol. 420(6917), pages 806-810, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manlu Zhu & Xiongfeng Dai, 2023. "Stringent response ensures the timely adaptation of bacterial growth to nutrient downshift," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Matteo Mori & Chuankai Cheng & Brian R. Taylor & Hiroyuki Okano & Terence Hwa, 2023. "Functional decomposition of metabolism allows a system-level quantification of fluxes and protein allocation towards specific metabolic functions," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    3. Robert Planqué & Josephus Hulshof & Bas Teusink & Johannes C Hendriks & Frank J Bruggeman, 2018. "Maintaining maximal metabolic flux by gene expression control," PLOS Computational Biology, Public Library of Science, vol. 14(9), pages 1-20, September.
    4. Daphna Rothschild & Erez Dekel & Jean Hausser & Anat Bren & Guy Aidelberg & Pablo Szekely & Uri Alon, 2014. "Linear Superposition and Prediction of Bacterial Promoter Activity Dynamics in Complex Conditions," PLOS Computational Biology, Public Library of Science, vol. 10(5), pages 1-9, May.
    5. Yuping Chen & Jo-Hsi Huang & Connie Phong & James E. Ferrell, 2024. "Viscosity-dependent control of protein synthesis and degradation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    6. Ida Lauritsen & Pernille Ott Frendorf & Silvia Capucci & Sophia A. H. Heyde & Sarah D. Blomquist & Sofie Wendel & Emil C. Fischer & Agnieszka Sekowska & Antoine Danchin & Morten H. H. Nørholm, 2021. "Temporal evolution of master regulator Crp identifies pyrimidines as catabolite modulator factors," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    7. Yuxiang Zhao & Zishu Liu & Baofeng Zhang & Jingjie Cai & Xiangwu Yao & Meng Zhang & Ye Deng & Baolan Hu, 2023. "Inter-bacterial mutualism promoted by public goods in a system characterized by deterministic temperature variation," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    8. Uri Barenholz & Leeat Keren & Eran Segal & Ron Milo, 2016. "A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate," PLOS ONE, Public Library of Science, vol. 11(4), pages 1-21, April.
    9. Joanna Warwick-Dugdale & Funing Tian & Michelle L. Michelsen & Dylan R. Cronin & Karen Moore & Audrey Farbos & Lauren Chittick & Ashley Bell & Ahmed A. Zayed & Holger H. Buchholz & Luis M. Bolanos & R, 2024. "Long-read powered viral metagenomics in the oligotrophic Sargasso Sea," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    10. Declan A. Gray & Biwen Wang & Margareth Sidarta & Fabián A. Cornejo & Jurian Wijnheijmer & Rupa Rani & Pamela Gamba & Kürşad Turgay & Michaela Wenzel & Henrik Strahl & Leendert W. Hamoen, 2024. "Membrane depolarization kills dormant Bacillus subtilis cells by generating a lethal dose of ROS," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    11. Matteo Mori & Vadim Patsalo & Christian Euler & James R. Williamson & Matthew Scott, 2024. "Proteome partitioning constraints in long-term laboratory evolution," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Mingxing Wang & An-Hui Ge & Xingzhu Ma & Xiaolin Wang & Qiujin Xie & Like Wang & Xianwei Song & Mengchen Jiang & Weibing Yang & Jeremy D. Murray & Yayu Wang & Huan Liu & Xiaofeng Cao & Ertao Wang, 2024. "Dynamic root microbiome sustains soybean productivity under unbalanced fertilization," Nature Communications, Nature, vol. 15(1), pages 1-15, December.
    13. Duncan Ingram & Guy-Bart Stan, 2023. "Modelling genetic stability in engineered cell populations," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    14. Iván Domenzain & Benjamín Sánchez & Mihail Anton & Eduard J. Kerkhoven & Aarón Millán-Oropeza & Céline Henry & Verena Siewers & John P. Morrissey & Nikolaus Sonnenschein & Jens Nielsen, 2022. "Reconstruction of a catalogue of genome-scale metabolic models with enzymatic constraints using GECKO 2.0," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    15. Lise Goltermann & Pablo Laborda & Oihane Irazoqui & Ivan Pogrebnyakov & Maria Pals Bendixen & Søren Molin & Helle Krogh Johansen & Ruggero La Rosa, 2024. "Macrolide resistance through uL4 and uL22 ribosomal mutations in Pseudomonas aeruginosa," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    16. Kirill Sechkar & Harrison Steel & Giansimone Perrino & Guy-Bart Stan, 2024. "A coarse-grained bacterial cell model for resource-aware analysis and design of synthetic gene circuits," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    17. Shiben Zhu & Juken Hong & Teng Wang, 2024. "Horizontal gene transfer is predicted to overcome the diversity limit of competing microbial species," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    18. Vit Piskovsky & Nuno M. Oliveira, 2023. "Bacterial motility can govern the dynamics of antibiotic resistance evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    19. Cong Wang & Qing-Yi Yu & Niu-Niu Ji & Yong Zheng & John W. Taylor & Liang-Dong Guo & Cheng Gao, 2023. "Bacterial genome size and gene functional diversity negatively correlate with taxonomic diversity along a pH gradient," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    20. Ning Qin & Lingyun Li & Xiaozhen Wan & Xu Ji & Yu Chen & Chaokun Li & Ping Liu & Yijie Zhang & Weijie Yang & Junfeng Jiang & Jianye Xia & Shuobo Shi & Tianwei Tan & Jens Nielsen & Yun Chen & Zihe Liu, 2024. "Increased CO2 fixation enables high carbon-yield production of 3-hydroxypropionic acid in yeast," Nature Communications, Nature, vol. 15(1), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:15:y:2024:i:1:d:10.1038_s41467-024-48591-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.