IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v13y2022i1d10.1038_s41467-022-33103-4.html
   My bibliography  Save this article

Observation of Bose-Einstein condensates of excitons in a bulk semiconductor

Author

Listed:
  • Yusuke Morita

    (The University of Tokyo)

  • Kosuke Yoshioka

    (The University of Tokyo
    The University of Tokyo)

  • Makoto Kuwata-Gonokami

    (The University of Tokyo)

Abstract

An unambiguous observation of the Bose-Einstein condensation (BEC) of excitons in a photoexcited bulk semiconductor and elucidation of its inherent nature have been longstanding problems in condensed matter physics. Here, we observe the quantum phase transition and a Bose-Einstein condensate appearing in a trapped gas of 1s paraexcitons in bulk Cu2O below 400 mK, by directly visualizing the exciton cloud in real space using mid-infrared induced absorption imaging that we realized in a dilution refrigerator. Our study shows that the paraexciton condensate is undetectable by conventional luminescence spectroscopy. We find an unconventionally small condensate fraction of 0.016 with the spatial profile of the condensate well described by mean-field theory. Our discovery of this new type of BEC in the purely matter-like exciton system interacting with a cold phonon bath could pave the way for the classification of its long-range order, and for essential understanding of quantum statistical mechanics of non-equilibrium open systems.

Suggested Citation

  • Yusuke Morita & Kosuke Yoshioka & Makoto Kuwata-Gonokami, 2022. "Observation of Bose-Einstein condensates of excitons in a bulk semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
  • Handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33103-4
    DOI: 10.1038/s41467-022-33103-4
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-022-33103-4
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-022-33103-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. J. Kasprzak & M. Richard & S. Kundermann & A. Baas & P. Jeambrun & J. M. J. Keeling & F. M. Marchetti & M. H. Szymańska & R. André & J. L. Staehli & V. Savona & P. B. Littlewood & B. Deveaud & Le Si D, 2006. "Bose–Einstein condensation of exciton polaritons," Nature, Nature, vol. 443(7110), pages 409-414, September.
    2. Kosuke Yoshioka & Eunmi Chae & Makoto Kuwata-Gonokami, 2011. "Transition to a Bose–Einstein condensate and relaxation explosion of excitons at sub-Kelvin temperatures," Nature Communications, Nature, vol. 2(1), pages 1-5, September.
    3. Markus Greiner & Cindy A. Regal & Deborah S. Jin, 2003. "Emergence of a molecular Bose–Einstein condensate from a Fermi gas," Nature, Nature, vol. 426(6966), pages 537-540, December.
    4. J. R. Leonard & Lunhui Hu & A. A. High & A. T. Hammack & Congjun Wu & L. V. Butov & K. L. Campman & A. C. Gossard, 2021. "Moiré pattern of interference dislocations in condensate of indirect excitons," Nature Communications, Nature, vol. 12(1), pages 1-6, December.
    5. L. V. Butov & C. W. Lai & A. L. Ivanov & A. C. Gossard & D. S. Chemla, 2002. "Towards Bose–Einstein condensation of excitons in potential traps," Nature, Nature, vol. 417(6884), pages 47-52, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiaxin Zhao & Antonio Fieramosca & Kevin Dini & Ruiqi Bao & Wei Du & Rui Su & Yuan Luo & Weijie Zhao & Daniele Sanvitto & Timothy C. H. Liew & Qihua Xiong, 2023. "Exciton polariton interactions in Van der Waals superlattices at room temperature," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    2. Mengjie Wei & Wouter Verstraelen & Konstantinos Orfanakis & Arvydas Ruseckas & Timothy C. H. Liew & Ifor D. W. Samuel & Graham A. Turnbull & Hamid Ohadi, 2022. "Optically trapped room temperature polariton condensate in an organic semiconductor," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    3. María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    4. Tingting Wang & Dingyang Zhang & Shiqi Yang & Zhongchong Lin & Quan Chen & Jinbo Yang & Qihuang Gong & Zuxin Chen & Yu Ye & Wenjing Liu, 2023. "Magnetically-dressed CrSBr exciton-polaritons in ultrastrong coupling regime," Nature Communications, Nature, vol. 14(1), pages 1-7, December.
    5. Yoshito Watanabe & Atsushi Miyake & Masaki Gen & Yuta Mizukami & Kenichiro Hashimoto & Takasada Shibauchi & Akihiko Ikeda & Masashi Tokunaga & Takashi Kurumaji & Yusuke Tokunaga & Taka-hisa Arima, 2023. "Double dome structure of the Bose–Einstein condensation in diluted S = 3/2 quantum magnets," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    6. Habitzreuter, Marco A. & Rizzatti, Eduardo O. & Barbosa, Marcia C., 2023. "Waterlike density anomaly in fermions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 630(C).
    7. Francesco L. Ruta & Shuai Zhang & Yinming Shao & Samuel L. Moore & Swagata Acharya & Zhiyuan Sun & Siyuan Qiu & Johannes Geurs & Brian S. Y. Kim & Matthew Fu & Daniel G. Chica & Dimitar Pashov & Xiaod, 2023. "Hyperbolic exciton polaritons in a van der Waals magnet," Nature Communications, Nature, vol. 14(1), pages 1-9, December.
    8. Charalambos Louca & Armando Genco & Salvatore Chiavazzo & Thomas P. Lyons & Sam Randerson & Chiara Trovatello & Peter Claronino & Rahul Jayaprakash & Xuerong Hu & James Howarth & Kenji Watanabe & Taka, 2023. "Interspecies exciton interactions lead to enhanced nonlinearity of dipolar excitons and polaritons in MoS2 homobilayers," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    9. Hangyong Shan & Lukas Lackner & Bo Han & Evgeny Sedov & Christoph Rupprecht & Heiko Knopf & Falk Eilenberger & Johannes Beierlein & Nils Kunte & Martin Esmann & Kentaro Yumigeta & Kenji Watanabe & Tak, 2021. "Spatial coherence of room-temperature monolayer WSe2 exciton-polaritons in a trap," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
    10. Yao Li & Xuekai Ma & Xiaokun Zhai & Meini Gao & Haitao Dai & Stefan Schumacher & Tingge Gao, 2022. "Manipulating polariton condensates by Rashba-Dresselhaus coupling at room temperature," Nature Communications, Nature, vol. 13(1), pages 1-6, December.
    11. Anna Grudinina & Maria Efthymiou-Tsironi & Vincenzo Ardizzone & Fabrizio Riminucci & Milena De Giorgi & Dimitris Trypogeorgos & Kirk Baldwin & Loren Pfeiffer & Dario Ballarini & Daniele Sanvitto & Nin, 2023. "Collective excitations of a bound-in-the-continuum condensate," Nature Communications, Nature, vol. 14(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:13:y:2022:i:1:d:10.1038_s41467-022-33103-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.