IDEAS home Printed from https://ideas.repec.org/a/nat/natcom/v12y2021i1d10.1038_s41467-021-27466-3.html
   My bibliography  Save this article

Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions

Author

Listed:
  • Yehonatan Gelkop

    (The Hebrew University)

  • Fabrizio Mei

    (Università di Roma “La Sapienza”)

  • Sagi Frishman

    (The Hebrew University)

  • Yehudit Garcia

    (The Hebrew University
    The Hebrew University)

  • Ludovica Falsi

    (Università di Roma “La Sapienza”
    Università di Roma “La Sapienza”)

  • Galina Perepelitsa

    (The Hebrew University)

  • Claudio Conti

    (Università di Roma “La Sapienza”
    Università di Roma “La Sapienza”)

  • Eugenio DelRe

    (Università di Roma “La Sapienza”
    Università di Roma “La Sapienza”)

  • Aharon J. Agranat

    (The Hebrew University
    The Hebrew University)

Abstract

A hyperbolic medium will transfer super-resolved optical waveforms with no distortion, support negative refraction, superlensing, and harbor nontrivial topological photonic phases. Evidence of hyperbolic effects is found in periodic and resonant systems for weakly diffracting beams, in metasurfaces, and even naturally in layered systems. At present, an actual hyperbolic propagation requires the use of metamaterials, a solution that is accompanied by constraints on wavelength, geometry, and considerable losses. We show how nonlinearity can transform a bulk KTN perovskite into a broadband 3D hyperbolic substance for visible light, manifesting negative refraction and superlensing at room-temperature. The phenomenon is a consequence of giant electro-optic response to the electric field generated by the thermal diffusion of photogenerated charges. Results open new scenarios in the exploration of enhanced light-matter interaction and in the design of broadband photonic devices.

Suggested Citation

  • Yehonatan Gelkop & Fabrizio Mei & Sagi Frishman & Yehudit Garcia & Ludovica Falsi & Galina Perepelitsa & Claudio Conti & Eugenio DelRe & Aharon J. Agranat, 2021. "Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions," Nature Communications, Nature, vol. 12(1), pages 1-7, December.
  • Handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27466-3
    DOI: 10.1038/s41467-021-27466-3
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41467-021-27466-3
    File Function: Abstract
    Download Restriction: no

    File URL: https://libkey.io/10.1038/s41467-021-27466-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Joshua D. Caldwell & Andrey V. Kretinin & Yiguo Chen & Vincenzo Giannini & Michael M. Fogler & Yan Francescato & Chase T. Ellis & Joseph G. Tischler & Colin R. Woods & Alexander J. Giles & Minghui Hon, 2014. "Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride," Nature Communications, Nature, vol. 5(1), pages 1-9, December.
    2. P. N. Dyachenko & S. Molesky & A. Yu Petrov & M. Störmer & T. Krekeler & S. Lang & M. Ritter & Z. Jacob & M. Eich, 2016. "Controlling thermal emission with refractory epsilon-near-zero metamaterials via topological transitions," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    3. Jingbo Sun & Mikhail I. Shalaev & Natalia M. Litchinitser, 2015. "Experimental demonstration of a non-resonant hyperlens in the visible spectral range," Nature Communications, Nature, vol. 6(1), pages 1-6, November.
    4. You-Chia Chang & Che-Hung Liu & Chang-Hua Liu & Siyuan Zhang & Seth R. Marder & Evgenii E. Narimanov & Zhaohui Zhong & Theodore B. Norris, 2016. "Realization of mid-infrared graphene hyperbolic metamaterials," Nature Communications, Nature, vol. 7(1), pages 1-7, April.
    5. Shumin Xiao & Vladimir P. Drachev & Alexander V. Kildishev & Xingjie Ni & Uday K. Chettiar & Hsiao-Kuan Yuan & Vladimir M. Shalaev, 2010. "Loss-free and active optical negative-index metamaterials," Nature, Nature, vol. 466(7307), pages 735-738, August.
    6. Alexander A. High & Robert C. Devlin & Alan Dibos & Mark Polking & Dominik S. Wild & Janos Perczel & Nathalie P. de Leon & Mikhail D. Lukin & Hongkun Park, 2015. "Visible-frequency hyperbolic metasurface," Nature, Nature, vol. 522(7555), pages 192-196, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hongwei Wang & Anshuman Kumar & Siyuan Dai & Xiao Lin & Zubin Jacob & Sang-Hyun Oh & Vinod Menon & Evgenii Narimanov & Young Duck Kim & Jian-Ping Wang & Phaedon Avouris & Luis Martin Moreno & Joshua C, 2024. "Planar hyperbolic polaritons in 2D van der Waals materials," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. María Barra-Burillo & Unai Muniain & Sara Catalano & Marta Autore & Fèlix Casanova & Luis E. Hueso & Javier Aizpurua & Ruben Esteban & Rainer Hillenbrand, 2021. "Microcavity phonon polaritons from the weak to the ultrastrong phonon–photon coupling regime," Nature Communications, Nature, vol. 12(1), pages 1-9, December.
    3. Boutabba, Nadia & Rasheed, Zoya & Ali, Hazrat, 2023. "Light drag in a left-handed atomic medium via Cross Kerr-like nonlinearity," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    4. Francesco L. Ruta & Brian S. Y. Kim & Zhiyuan Sun & Daniel J. Rizzo & Alexander S. McLeod & Anjaly Rajendran & Song Liu & Andrew J. Millis & James C. Hone & D. N. Basov, 2022. "Surface plasmons induce topological transition in graphene/α-MoO3 heterostructures," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    5. Trond I. Andersen & Ryan J. Gelly & Giovanni Scuri & Bo L. Dwyer & Dominik S. Wild & Rivka Bekenstein & Andrey Sushko & Jiho Sung & You Zhou & Alexander A. Zibrov & Xiaoling Liu & Andrew Y. Joe & Kenj, 2022. "Beam steering at the nanosecond time scale with an atomically thin reflector," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    6. Hiroki Takeshita & Ashif Aminulloh Fathnan & Daisuke Nita & Atsuko Nagata & Shinya Sugiura & Hiroki Wakatsuchi, 2024. "Frequency-hopping wave engineering with metasurfaces," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    7. Eva A. A. Pogna & Valentino Pistore & Leonardo Viti & Lianhe Li & A. Giles Davies & Edmund H. Linfield & Miriam S. Vitiello, 2024. "Near-field detection of gate-tunable anisotropic plasmon polaritons in black phosphorus at terahertz frequencies," Nature Communications, Nature, vol. 15(1), pages 1-8, December.
    8. Neda Alsadat Aghamiri & Guangwei Hu & Alireza Fali & Zhen Zhang & Jiahan Li & Sivacarendran Balendhran & Sumeet Walia & Sharath Sriram & James H. Edgar & Shriram Ramanathan & Andrea Alù & Yohannes Aba, 2022. "Reconfigurable hyperbolic polaritonics with correlated oxide metasurfaces," Nature Communications, Nature, vol. 13(1), pages 1-9, December.
    9. Bingyan Liu & Shirong Liu & Vasanthan Devaraj & Yuxiang Yin & Yueqi Zhang & Jingui Ai & Yaochen Han & Jicheng Feng, 2023. "Metal 3D nanoprinting with coupled fields," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Sang Hyun Park & Michael Sammon & Eugene Mele & Tony Low, 2022. "Plasmonic gain in current biased tilted Dirac nodes," Nature Communications, Nature, vol. 13(1), pages 1-7, December.
    11. Shadi Safaei Jazi & Ihar Faniayeu & Rafael Cichelero & Dimitrios C. Tzarouchis & Mohammad Mahdi Asgari & Alexandre Dmitriev & Shanhui Fan & Viktar Asadchy, 2024. "Optical Tellegen metamaterial with spontaneous magnetization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    12. Qiaoxia Xing & Jiasheng Zhang & Yuqiang Fang & Chaoyu Song & Tuoyu Zhao & Yanlin Mou & Chong Wang & Junwei Ma & Yuangang Xie & Shenyang Huang & Lei Mu & Yuchen Lei & Wu Shi & Fuqiang Huang & Hugen Yan, 2024. "Tunable anisotropic van der Waals films of 2M-WS2 for plasmon canalization," Nature Communications, Nature, vol. 15(1), pages 1-9, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcom:v:12:y:2021:i:1:d:10.1038_s41467-021-27466-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.