IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v4y2014i6d10.1038_nclimate2223.html
   My bibliography  Save this article

Evolution of land surface air temperature trend

Author

Listed:
  • Fei Ji

    (College of Atmospheric Sciences, Lanzhou University
    Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University
    Center for Ocean–Atmospheric Prediction Studies, Florida State University)

  • Zhaohua Wu

    (Center for Ocean–Atmospheric Prediction Studies, Florida State University
    Ocean and Atmospheric Science, Florida State University)

  • Jianping Huang

    (College of Atmospheric Sciences, Lanzhou University
    Key Laboratory for Semi-Arid Climate Change of the Ministry of Education, College of Atmospheric Sciences, Lanzhou University)

  • Eric P. Chassignet

    (Center for Ocean–Atmospheric Prediction Studies, Florida State University
    Ocean and Atmospheric Science, Florida State University)

Abstract

Global warming is non-uniform in time and space, but to understand potential impacts we need better understanding of its evolution. This work breaks down the warming trend and finds that it began in the subtropical and subpolar regions of the Northern Hemisphere, followed by the subtropical region of the Southern Hemisphere. The warming bands in the Northern Hemisphere expanded during the period 1950–1985 and merged to cover the entire hemisphere.

Suggested Citation

  • Fei Ji & Zhaohua Wu & Jianping Huang & Eric P. Chassignet, 2014. "Evolution of land surface air temperature trend," Nature Climate Change, Nature, vol. 4(6), pages 462-466, June.
  • Handle: RePEc:nat:natcli:v:4:y:2014:i:6:d:10.1038_nclimate2223
    DOI: 10.1038/nclimate2223
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/nclimate2223
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/nclimate2223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fan Wang & Meng Gao & Cheng Liu & Ran Zhao & Michael B. McElroy, 2024. "Uniformly elevated future heat stress in China driven by spatially heterogeneous water vapor changes," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    2. Wenwen Guo & Shengzhi Huang & Yong Zhao & Guoyong Leng & Xianggui Zhao & Pei Li & Mingqiu Nie & Qiang Huang, 2023. "Quantifying the effects of nonlinear trends of meteorological factors on drought dynamics," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 117(3), pages 2505-2526, July.
    3. Liang Chen & Juan J. Dolado & Jesús Gonzalo & Andrey Ramos, 2023. "Heterogeneous predictive association of CO2 with global warming," Economica, London School of Economics and Political Science, vol. 90(360), pages 1397-1421, October.
    4. Li, Jiasheng & Guo, Xiaomin & Chuai, Xiaowei & Xie, Fangjian & Yang, Feng & Gao, Runyi & Ji, Xuepeng, 2021. "Reexamine China’s terrestrial ecosystem carbon balance under land use-type and climate change," Land Use Policy, Elsevier, vol. 102(C).
    5. Haimei Duan & Chunxue Shang & Kun Yang & Yi Luo, 2022. "Dynamic Response of Surface Water Temperature in Urban Lakes under Different Climate Scenarios—A Case Study in Dianchi Lake, China," IJERPH, MDPI, vol. 19(19), pages 1-11, September.
    6. Eryuan Liang & Christoph Leuschner & Choimaa Dulamsuren & Bettina Wagner & Markus Hauck, 2016. "Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau," Climatic Change, Springer, vol. 134(1), pages 163-176, January.
    7. Ziqian Zhong & Bin He & Hans W. Chen & Deliang Chen & Tianjun Zhou & Wenjie Dong & Cunde Xiao & Shang-ping Xie & Xiangzhou Song & Lanlan Guo & Ruiqiang Ding & Lixia Zhang & Ling Huang & Wenping Yuan &, 2023. "Reversed asymmetric warming of sub-diurnal temperature over land during recent decades," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    8. Mingan Zhu & Bihang Fan, 2021. "Exploring the Relationship between Rising Temperatures and the Number of Climate-Related Natural Disasters in China," IJERPH, MDPI, vol. 18(2), pages 1-11, January.
    9. Zhaoqi Wang & Zhiyuan Lu & Guolong Cui, 2020. "Spatiotemporal Variation of Land Surface Temperature and Vegetation in Response to Climate Change Based on NOAA-AVHRR Data over China," Sustainability, MDPI, vol. 12(9), pages 1-16, April.
    10. Eryuan Liang & Christoph Leuschner & Choimaa Dulamsuren & Bettina Wagner & Markus Hauck, 2016. "Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau," Climatic Change, Springer, vol. 134(1), pages 163-176, January.
    11. Changyu Li & Jianping Huang & Xiaoyue Liu & Lei Ding & Yongli He & Yongkun Xie, 2024. "The ocean losing its breath under the heatwaves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    12. Omid Alizadeh & Morteza Babaei, 2022. "Seasonally dependent precipitation changes and their driving mechanisms in Southwest Asia," Climatic Change, Springer, vol. 171(3), pages 1-16, April.
    13. Chong Jiang & Linbo Zhang, 2015. "Climate Change and Its Impact on the Eco-Environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China," IJERPH, MDPI, vol. 12(10), pages 1-25, September.
    14. Chong Jiang & Fei Wang, 2016. "Environmental Change in the Agro-Pastoral Transitional Zone, Northern China: Patterns, Drivers, and Implications," IJERPH, MDPI, vol. 13(2), pages 1-22, January.
    15. Bartczak Arkadiusz & Araźny Andrzej & Krzemiński Michał & Maszewski Rafał, 2022. "Hydrological Dry Periods versus Atmospheric Circulations in the Lower Vistula Basin (Poland) in 1954–2018," Quaestiones Geographicae, Sciendo, vol. 41(1), pages 107-125, March.
    16. Xiong, Hui & Shang, Pengjian & Bian, Songhan, 2017. "Detecting intrinsic dynamics of traffic flow with recurrence analysis and empirical mode decomposition," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 70-84.
    17. Liang Qiao & Zhiyan Zuo & Renhe Zhang & Shilong Piao & Dong Xiao & Kaiwen Zhang, 2023. "Soil moisture–atmosphere coupling accelerates global warming," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    18. Mao, Hui & Chai, Yujia & Shao, Xiaoxuan & Chang, Xue, 2024. "Digital extension and farmers' adoption of climate adaptation technology: An empirical analysis of China," Land Use Policy, Elsevier, vol. 143(C).
    19. Dayong Zhang & Jun Li & Qiang Ji & Shunsuke Managi, 2021. "Climate variations, culture and economic behaviour of Chinese households," Climatic Change, Springer, vol. 167(1), pages 1-18, July.
    20. Panagiotis Tzouvanas & Renatas Kizys & Ioannis Chatziantoniou & Roza Sagitova, 2019. "Can Variations in Temperature Explain the Systemic Risk of European Firms?," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 74(4), pages 1723-1759, December.
    21. Ziyan Zheng & Zhuguo Ma & Mingxing Li & Jiangjiang Xia, 2017. "Regional water budgets and hydroclimatic trend variations in Xinjiang from 1951 to 2000," Climatic Change, Springer, vol. 144(3), pages 447-460, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:4:y:2014:i:6:d:10.1038_nclimate2223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.