IDEAS home Printed from https://ideas.repec.org/a/gam/jijerp/v12y2015i10p12057-12081d56423.html
   My bibliography  Save this article

Climate Change and Its Impact on the Eco-Environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China

Author

Listed:
  • Chong Jiang

    (College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
    State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    Key Laboratory of Regional Eco-Process and Function Assessment and State Environment Protection, Chinese Academy of Environmental Sciences, Beijing 100012, China
    Joint Center for Global Change Studies, Beijing 100875, China)

  • Linbo Zhang

    (State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
    Key Laboratory of Regional Eco-Process and Function Assessment and State Environment Protection, Chinese Academy of Environmental Sciences, Beijing 100012, China)

Abstract

This study analyzes the impact of climate change on the eco-environment of the Three-Rivers Headwater Region (TRHR), Tibetan Plateau, China. Temperature and precipitation experienced sharp increases in this region during the past 57 years. A dramatic increase in winter temperatures contributed to a rise in average annual temperatures. Moreover, annual runoff in the Lancang (LRB) and Yangtze (YARB) river basins showed an increasing trend, compared to a slight decrease in the Yellow River Basin (YRB). Runoff is predominantly influenced by rainfall, which is controlled by several monsoon systems. The water temperature in the YRB and YARB increased significantly from 1958 to 2007 ( p < 0.001), driven by air temperature changes. Additionally, owing to warming and wetting trends in the TRHR, the net primary productivity (NPP) and normalized difference vegetation index (NDVI) showed significant increasing trends during the past half-century. Furthermore, although an increase in water erosion due to rainfall erosivity was observed, wind speeds declined significantly, causing a decline in wind erosion, as well as the frequency and duration of sandstorms. A clear regional warming trend caused an obvious increasing trend in glacier runoff, with a maximum value observed in the 2000s.

Suggested Citation

  • Chong Jiang & Linbo Zhang, 2015. "Climate Change and Its Impact on the Eco-Environment of the Three-Rivers Headwater Region on the Tibetan Plateau, China," IJERPH, MDPI, vol. 12(10), pages 1-25, September.
  • Handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:12057-12081:d:56423
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1660-4601/12/10/12057/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1660-4601/12/10/12057/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fei Ji & Zhaohua Wu & Jianping Huang & Eric P. Chassignet, 2014. "Evolution of land surface air temperature trend," Nature Climate Change, Nature, vol. 4(6), pages 462-466, June.
    2. Laga Tong & Xinliang Xu & Ying Fu & Shuang Li, 2014. "Wetland Changes and Their Responses to Climate Change in the “Three-River Headwaters” Region of China since the 1990s," Energies, MDPI, vol. 7(4), pages 1-20, April.
    3. Shilong Piao & Philippe Ciais & Yao Huang & Zehao Shen & Shushi Peng & Junsheng Li & Liping Zhou & Hongyan Liu & Yuecun Ma & Yihui Ding & Pierre Friedlingstein & Chunzhen Liu & Kun Tan & Yongqiang Yu , 2010. "The impacts of climate change on water resources and agriculture in China," Nature, Nature, vol. 467(7311), pages 43-51, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chong Jiang & Fei Wang, 2016. "Environmental Change in the Agro-Pastoral Transitional Zone, Northern China: Patterns, Drivers, and Implications," IJERPH, MDPI, vol. 13(2), pages 1-22, January.
    2. He, Liuyue & Xu, Zhenci & Wang, Sufen & Bao, Jianxia & Fan, Yunfei & Daccache, Andre, 2022. "Optimal crop planting pattern can be harmful to reach carbon neutrality: Evidence from food-energy-water-carbon nexus perspective," Applied Energy, Elsevier, vol. 308(C).
    3. Ding, Yimin & Wang, Weiguang & Song, Ruiming & Shao, Quanxi & Jiao, Xiyun & Xing, Wanqiu, 2017. "Modeling spatial and temporal variability of the impact of climate change on rice irrigation water requirements in the middle and lower reaches of the Yangtze River, China," Agricultural Water Management, Elsevier, vol. 193(C), pages 89-101.
    4. Bu, Lingduo & Chen, Xinping & Li, Shiqing & Liu, Jianliang & Zhu, Lin & Luo, Shasha & Lee Hill, Robert & Zhao, Ying, 2015. "The effect of adapting cultivars on the water use efficiency of dryland maize (Zea mays L.) in northwestern China," Agricultural Water Management, Elsevier, vol. 148(C), pages 1-9.
    5. Wenfeng Chi & Yuanyuan Zhao & Wenhui Kuang & Tao Pan & Tu Ba & Jinshen Zhao & Liang Jin & Sisi Wang, 2021. "Impact of Cropland Evolution on Soil Wind Erosion in Inner Mongolia of China," Land, MDPI, vol. 10(6), pages 1-16, June.
    6. Xu, Ying & Findlay, Christopher, 2019. "Farmers’ constraints, governmental support and climate change adaptation: Evidence from Guangdong Province, China," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 63(4), October.
    7. Zhongen Niu & Huimin Yan & Fang Liu, 2020. "Decreasing Cropping Intensity Dominated the Negative Trend of Cropland Productivity in Southern China in 2000–2015," Sustainability, MDPI, vol. 12(23), pages 1-14, December.
    8. Yuhong Shuai & Liming Yao, 2021. "Adjustable Robust Optimization for Multi-Period Water Allocation in Droughts Under Uncertainty," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 35(12), pages 4043-4065, September.
    9. Zhang, Fengtai & Xiao, Yuedong & Gao, Lei & Ma, Dalai & Su, Ruiqi & Yang, Qing, 2022. "How agricultural water use efficiency varies in China—A spatial-temporal analysis considering unexpected outputs," Agricultural Water Management, Elsevier, vol. 260(C).
    10. Chen, Qi & Qu, Zhaoming & Ma, Guohua & Wang, Wenjing & Dai, Jiaying & Zhang, Min & Wei, Zhanbo & Liu, Zhiguang, 2022. "Humic acid modulates growth, photosynthesis, hormone and osmolytes system of maize under drought conditions," Agricultural Water Management, Elsevier, vol. 263(C).
    11. Kang, Shaozhong & Hao, Xinmei & Du, Taisheng & Tong, Ling & Su, Xiaoling & Lu, Hongna & Li, Xiaolin & Huo, Zailin & Li, Sien & Ding, Risheng, 2017. "Improving agricultural water productivity to ensure food security in China under changing environment: From research to practice," Agricultural Water Management, Elsevier, vol. 179(C), pages 5-17.
    12. Zhihai Yang & Amin W. Mugera & Fan Zhang, 2016. "Investigating Yield Variability and Inefficiency in Rice Production: A Case Study in Central China," Sustainability, MDPI, vol. 8(8), pages 1-11, August.
    13. Xiaoguang Chen & Madhu Khanna & Lu Yang, 2022. "The impacts of temperature on Chinese food processing firms," Australian Journal of Agricultural and Resource Economics, Australian Agricultural and Resource Economics Society, vol. 66(2), pages 256-279, April.
    14. Sicong Wang & Changhai Qin & Yong Zhao & Jing Zhao & Yuping Han, 2023. "The Evolutionary Path of the Center of Gravity for Water Use, the Population, and the Economy, and Their Decomposed Contributions in China from 1965 to 2019," Sustainability, MDPI, vol. 15(12), pages 1-20, June.
    15. Minghao Bai & Shenbei Zhou & Ting Tang, 2022. "A Reconstruction of Irrigated Cropland Extent in China from 2000 to 2019 Using the Synergy of Statistics and Satellite-Based Datasets," Land, MDPI, vol. 11(10), pages 1-27, September.
    16. Yang, Wenjie & Li, Yanhang & Jia, Bingli & Liu, Lei & Yuan, Aijing & Liu, Jinshan & Qiu, Weihong, 2024. "Optimized fertilization based on fallow season precipitation and the Nutrient Expert system for dryland wheat reduced environmental risks and increased economic benefits," Agricultural Water Management, Elsevier, vol. 291(C).
    17. Wang, Guangshuai & Liang, Yueping & Zhang, Qian & Jha, Shiva K. & Gao, Yang & Shen, Xiaojun & Sun, Jingsheng & Duan, Aiwang, 2016. "Mitigated CH4 and N2O emissions and improved irrigation water use efficiency in winter wheat field with surface drip irrigation in the North China Plain," Agricultural Water Management, Elsevier, vol. 163(C), pages 403-407.
    18. Yoro Diallo & Sébastien Marchand & Etienne Espagne, 2019. "Impacts of extreme events on technical efficiency in Vietnamese agriculture," CIRED Working Papers halshs-02080285, HAL.
    19. Cao, Meng & Chen, Min & Liu, Ji & Liu, Yanli, 2022. "Assessing the performance of satellite soil moisture on agricultural drought monitoring in the North China Plain," Agricultural Water Management, Elsevier, vol. 263(C).
    20. Xu, Zhihao & Yin, Xinan & Yang, Zhifeng & Cai, Yanpeng & Sun, Tao, 2016. "New model to assessing nutrient assimilative capacity in plant-dominated lakes: Considering ecological effects of hydrological changes," Ecological Modelling, Elsevier, vol. 332(C), pages 94-102.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jijerp:v:12:y:2015:i:10:p:12057-12081:d:56423. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.