IDEAS home Printed from https://ideas.repec.org/a/nat/natcli/v8y2018i1d10.1038_s41558-017-0020-x.html
   My bibliography  Save this article

The far reach of ice-shelf thinning in Antarctica

Author

Listed:
  • R. Reese

    (Member of the Leibniz Association
    University of Potsdam)

  • G. H. Gudmundsson

    (British Antarctic Survey)

  • A. Levermann

    (Member of the Leibniz Association
    University of Potsdam
    Columbia University)

  • R. Winkelmann

    (Member of the Leibniz Association
    University of Potsdam)

Abstract

Floating ice shelves, which fringe most of Antarctica’s coastline, regulate ice flow into the Southern Ocean 1–3 . Their thinning 4–7 or disintegration 8,9 can cause upstream acceleration of grounded ice and raise global sea levels. So far the effect has not been quantified in a comprehensive and spatially explicit manner. Here, using a finite-element model, we diagnose the immediate, continent-wide flux response to different spatial patterns of ice-shelf mass loss. We show that highly localized ice-shelf thinning can reach across the entire shelf and accelerate ice flow in regions far from the initial perturbation. As an example, this ‘tele-buttressing’ enhances outflow from Bindschadler Ice Stream in response to thinning near Ross Island more than 900 km away. We further find that the integrated flux response across all grounding lines is highly dependent on the location of imposed changes: the strongest response is caused not only near ice streams and ice rises, but also by thinning, for instance, well-within the Filchner–Ronne and Ross Ice Shelves. The most critical regions in all major ice shelves are often located in regions easily accessible to the intrusion of warm ocean waters 10–12 , stressing Antarctica’s vulnerability to changes in its surrounding ocean.

Suggested Citation

  • R. Reese & G. H. Gudmundsson & A. Levermann & R. Winkelmann, 2018. "The far reach of ice-shelf thinning in Antarctica," Nature Climate Change, Nature, vol. 8(1), pages 53-57, January.
  • Handle: RePEc:nat:natcli:v:8:y:2018:i:1:d:10.1038_s41558-017-0020-x
    DOI: 10.1038/s41558-017-0020-x
    as

    Download full text from publisher

    File URL: https://www.nature.com/articles/s41558-017-0020-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1038/s41558-017-0020-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. James R. Jordan & B. W. J. Miles & G. H. Gudmundsson & S. S. R. Jamieson & A. Jenkins & C. R. Stokes, 2023. "Increased warm water intrusions could cause mass loss in East Antarctica during the next 200 years," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    2. J. Sutter & A. Jones & T. L. Frölicher & C. Wirths & T. F. Stocker, 2023. "Climate intervention on a high-emissions pathway could delay but not prevent West Antarctic Ice Sheet demise," Nature Climate Change, Nature, vol. 13(9), pages 951-960, September.
    3. Seung-Tae Yoon & Won Sang Lee & SungHyun Nam & Choon-Ki Lee & Sukyoung Yun & Karen Heywood & Lars Boehme & Yixi Zheng & Inhee Lee & Yeon Choi & Adrian Jenkins & Emilia Kyung Jin & Robert Larter & Juli, 2022. "Ice front retreat reconfigures meltwater-driven gyres modulating ocean heat delivery to an Antarctic ice shelf," Nature Communications, Nature, vol. 13(1), pages 1-8, December.
    4. Ilaria Tabone & Alexander Robinson & Marisa Montoya & Jorge Alvarez-Solas, 2024. "Holocene thinning in central Greenland controlled by the Northeast Greenland Ice Stream," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    5. Brad Reed & J. A. Mattias Green & Adrian Jenkins & G. Hilmar Gudmundsson, 2024. "Recent irreversible retreat phase of Pine Island Glacier," Nature Climate Change, Nature, vol. 14(1), pages 75-81, January.
    6. Gavin Piccione & Terrence Blackburn & Slawek Tulaczyk & E. Troy Rasbury & Mathis P. Hain & Daniel E. Ibarra & Katharina Methner & Chloe Tinglof & Brandon Cheney & Paul Northrup & Kathy Licht, 2022. "Subglacial precipitates record Antarctic ice sheet response to late Pleistocene millennial climate cycles," Nature Communications, Nature, vol. 13(1), pages 1-14, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:nat:natcli:v:8:y:2018:i:1:d:10.1038_s41558-017-0020-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.nature.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.