IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i6p2681-2687.html
   My bibliography  Save this article

Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module

Author

Listed:
  • Park, K.E.
  • Kang, G.H.
  • Kim, H.I.
  • Yu, G.J.
  • Kim, J.T.

Abstract

Building-integrated PhotoVoltaic (BIPV) is one of the most fascinating PV application technologies these days. To apply PV modules in buildings, various factors should be considered, such as the installation angle and orientation of PV module, shading, and temperature. The temperature of PV modules that are attached to building surfaces especially is one of the most important factors, as it affects both the electrical efficiency of a PV module and the energy load in a building. This study investigates the electrical and thermal performance of a semi-transparent PV module that was designed as a glazing component. The study evaluates the effects of the PV module's thermal characteristics on its electrical generation performance. The experiment was performed under both Standard Test Condition (STC) and outdoor conditions. The results showed that the power decreased about 0.48% (in STC with the exception of the temperature condition) and 0.52%(in outdoor conditions, under 500W/m2) per the 1°C increase of the PV module temperature. It was also found that the property of the glass used for the module affected the PV module temperature followed by its electrical performance.

Suggested Citation

  • Park, K.E. & Kang, G.H. & Kim, H.I. & Yu, G.J. & Kim, J.T., 2010. "Analysis of thermal and electrical performance of semi-transparent photovoltaic (PV) module," Energy, Elsevier, vol. 35(6), pages 2681-2687.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:6:p:2681-2687
    DOI: 10.1016/j.energy.2009.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209002990
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Celik, A.N., 2003. "Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data," Energy, Elsevier, vol. 28(5), pages 479-493.
    2. Rahman, S. & Khallat, M.A. & Salameh, Z.M., 1988. "Characterization of insolation data for use in photovoltaic system analysis models," Energy, Elsevier, vol. 13(1), pages 63-72.
    3. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    4. Chenni, R. & Makhlouf, M. & Kerbache, T. & Bouzid, A., 2007. "A detailed modeling method for photovoltaic cells," Energy, Elsevier, vol. 32(9), pages 1724-1730.
    5. Wong, P.W. & Shimoda, Y. & Nonaka, M. & Inoue, M. & Mizuno, M., 2008. "Semi-transparent PV: Thermal performance, power generation, daylight modelling and energy saving potential in a residential application," Renewable Energy, Elsevier, vol. 33(5), pages 1024-1036.
    6. Mattei, M. & Notton, G. & Cristofari, C. & Muselli, M. & Poggi, P., 2006. "Calculation of the polycrystalline PV module temperature using a simple method of energy balance," Renewable Energy, Elsevier, vol. 31(4), pages 553-567.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiwari, G.N. & Mishra, R.K. & Solanki, S.C., 2011. "Photovoltaic modules and their applications: A review on thermal modelling," Applied Energy, Elsevier, vol. 88(7), pages 2287-2304, July.
    2. Rehman, Shafiqur & El-Amin, Ibrahim, 2012. "Performance evaluation of an off-grid photovoltaic system in Saudi Arabia," Energy, Elsevier, vol. 46(1), pages 451-458.
    3. Rawat, Rahul & Kaushik, S.C. & Lamba, Ravita, 2016. "A review on modeling, design methodology and size optimization of photovoltaic based water pumping, standalone and grid connected system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1506-1519.
    4. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    5. Peng, Jinqing & Curcija, Dragan C. & Thanachareonkit, Anothai & Lee, Eleanor S. & Goudey, Howdy & Selkowitz, Stephen E., 2019. "Study on the overall energy performance of a novel c-Si based semitransparent solar photovoltaic window," Applied Energy, Elsevier, vol. 242(C), pages 854-872.
    6. Peng, Jinqing & Curcija, Dragan C. & Lu, Lin & Selkowitz, Stephen E. & Yang, Hongxing & Zhang, Weilong, 2016. "Numerical investigation of the energy saving potential of a semi-transparent photovoltaic double-skin facade in a cool-summer Mediterranean climate," Applied Energy, Elsevier, vol. 165(C), pages 345-356.
    7. Hussain, F. & Othman, M.Y.H & Sopian, K. & Yatim, B. & Ruslan, H. & Othman, H., 2013. "Design development and performance evaluation of photovoltaic/thermal (PV/T) air base solar collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 431-441.
    8. Xuan, Qingdong & Li, Guiqiang & Lu, Yashun & Zhao, Bin & Wang, Fuqiang & Pei, Gang, 2021. "Daylighting utilization and uniformity comparison for a concentrator-photovoltaic window in energy saving application on the building," Energy, Elsevier, vol. 214(C).
    9. Skoplaki, E. & Palyvos, J.A., 2009. "Operating temperature of photovoltaic modules: A survey of pertinent correlations," Renewable Energy, Elsevier, vol. 34(1), pages 23-29.
    10. Cheng, Yuanda & Gao, Min & Jia, Jie & Sun, Yanyi & Fan, Yi & Yu, Min, 2019. "An optimal and comparison study on daylight and overall energy performance of double-glazed photovoltaics windows in cold region of China," Energy, Elsevier, vol. 170(C), pages 356-366.
    11. Cossu, Marco & Yano, Akira & Li, Zhi & Onoe, Mahiro & Nakamura, Hidetoshi & Matsumoto, Toshinori & Nakata, Josuke, 2016. "Advances on the semi-transparent modules based on micro solar cells: First integration in a greenhouse system," Applied Energy, Elsevier, vol. 162(C), pages 1042-1051.
    12. Verma, Vishal & Kane, Aarti & Singh, Bhim, 2016. "Complementary performance enhancement of PV energy system through thermoelectric generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1017-1026.
    13. Yujing Sun & Fei Wang & Bo Wang & Qifang Chen & N.A. Engerer & Zengqiang Mi, 2016. "Correlation Feature Selection and Mutual Information Theory Based Quantitative Research on Meteorological Impact Factors of Module Temperature for Solar Photovoltaic Systems," Energies, MDPI, vol. 10(1), pages 1-20, December.
    14. Wang, Meng & Peng, Jinqing & Li, Nianping & Yang, Hongxing & Wang, Chunlei & Li, Xue & Lu, Tao, 2017. "Comparison of energy performance between PV double skin facades and PV insulating glass units," Applied Energy, Elsevier, vol. 194(C), pages 148-160.
    15. Abdelhakim Mesloub & Ghazy Abdullah Albaqawy & Mohd Zin Kandar, 2020. "The Optimum Performance of Building Integrated Photovoltaic (BIPV) Windows Under a Semi-Arid Climate in Algerian Office Buildings," Sustainability, MDPI, vol. 12(4), pages 1-38, February.
    16. Ng, Poh Khai & Mithraratne, Nalanie, 2014. "Lifetime performance of semi-transparent building-integrated photovoltaic (BIPV) glazing systems in the tropics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 736-745.
    17. Wang, Meng & Peng, Jinqing & Li, Nianping & Lu, Lin & Ma, Tao & Yang, Hongxing, 2016. "Assessment of energy performance of semi-transparent PV insulating glass units using a validated simulation model," Energy, Elsevier, vol. 112(C), pages 538-548.
    18. Lam, K.H. & Lai, T.M. & Lo, W.C. & To, W.M., 2012. "The application of dynamic modelling techniques to the grid-connected PV (photovoltaic) systems," Energy, Elsevier, vol. 46(1), pages 264-274.
    19. Yu, Guoqing & Yang, Hongxing & Luo, Daina & Cheng, Xu & Ansah, Mark Kyeredey, 2021. "A review on developments and researches of building integrated photovoltaic (BIPV) windows and shading blinds," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    20. Ayompe, L.M. & Duffy, A. & McCormack, S.J. & Conlon, M., 2010. "Validated real-time energy models for small-scale grid-connected PV-systems," Energy, Elsevier, vol. 35(10), pages 4086-4091.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:6:p:2681-2687. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.