IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v48y2021i5d10.1007_s11116-020-10149-1.html
   My bibliography  Save this article

Experience as a conditioning effect on choice: Does it matter whether it is exogenous or endogenous?

Author

Listed:
  • David A. Hensher

    (Institute of Transport and Logistics Studies, The University of Sydney Business School, The University of Sydney)

  • Camila Balbontin

    (Institute of Transport and Logistics Studies, The University of Sydney Business School, The University of Sydney)

  • William H. Greene

    (Institute of Transport and Logistics Studies, The University of Sydney Business School, The University of Sydney)

  • Joffre Swait

    (Erasmus University Rotterdam)

Abstract

Previous choice studies have proposed a way to condition the utility of each alternative in a choice set on experience with the alternatives accumulated over previous periods, defined either as a mode used or not in a most recent trip, or the mode chosen in their most recent trip and the number of similar one-way trips made during the last week. The paper found that the overall statistical performance of the mixed logit model improved significantly, suggesting that this conditioning idea has merit. Experience was treated as an exogenous influence linked to the scale of the random component, and to that extent it captures some amount of the heterogeneity in unobserved effects, purging them of potential endogeneity. The current paper continues to investigate the matter of endogeneity versus exogeneity. The proposed approach implements the control function method through the experience conditioning feature in a choice model. We develop two choice models, both using stated preference data. The paper extends the received contribution in that we allow for the endogenous variable to have an impact on the attributes through a two stage method, called the Multiple Indicator Solution, originally implemented in a different context and for a single (quality) attribute, in which stage two is the popular control function method. In the first stage, the entire utility expression associated with all observed attributes is conditioned on the prior experience with an alternative. Hence, we are capturing possible correlates associated with each and every attribute and not just one selected attribute. We find evidence of potential endogeneity. The purging exercise however, results in both statistical similarities and differences in time and cost choice elasticities and mean estimates of the value of travel time savings. We are able to identify a very practical method to correct for possible endogeneity under experience conditioning that will encourage researchers and practitioners to use such an approach in more advanced non-linear discrete choice models as a matter of routine.

Suggested Citation

  • David A. Hensher & Camila Balbontin & William H. Greene & Joffre Swait, 2021. "Experience as a conditioning effect on choice: Does it matter whether it is exogenous or endogenous?," Transportation, Springer, vol. 48(5), pages 2825-2855, October.
  • Handle: RePEc:kap:transp:v:48:y:2021:i:5:d:10.1007_s11116-020-10149-1
    DOI: 10.1007/s11116-020-10149-1
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-020-10149-1
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-020-10149-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    2. Jeffrey M Wooldridge, 2010. "Econometric Analysis of Cross Section and Panel Data," MIT Press Books, The MIT Press, edition 2, volume 1, number 0262232588, April.
    3. Pinar Karaca-Mandic & Kenneth Train, 2003. "Standard error correction in two-stage estimation with nested samples," Econometrics Journal, Royal Economic Society, vol. 6(2), pages 401-407, December.
    4. Hensher, David A. & Ho, Chinh Q., 2016. "Experience conditioning in commuter modal choice modelling – Does it make a difference?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 95(C), pages 164-176.
    5. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    6. Hensher, David A. & Rose, John M., 2007. "Development of commuter and non-commuter mode choice models for the assessment of new public transport infrastructure projects: A case study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(5), pages 428-443, June.
    7. Heckman, James J. & Robb, Richard Jr., 1985. "Alternative methods for evaluating the impact of interventions : An overview," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 239-267.
    8. David A. Hensher & John M. Rose, 2012. "The Influence of Alternative Acceptability, Attribute Thresholds and Choice Response Certainty on Automobile Purchase Preferences," Journal of Transport Economics and Policy, University of Bath, vol. 46(3), pages 451-468, September.
    9. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    10. Jeffrey M. Wooldridge, 2015. "Control Function Methods in Applied Econometrics," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 420-445.
    11. Camila Balbontin & David A. Hensher & Chinh Ho & Corinne Mulley, 0. "Do preferences for BRT and LRT change as a voter, citizen, tax payer, or self-interested resident?," Transportation, Springer, vol. 0, pages 1-50.
    12. Guevara, C. Angelo & Hess, Stephane, 2019. "A control-function approach to correct for endogeneity in discrete choice models estimated on SP-off-RP data and contrasts with an earlier FIML approach by Train & Wilson," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 224-239.
    13. Camila Balbontin & David A. Hensher & Chinh Ho & Corinne Mulley, 2020. "Do preferences for BRT and LRT change as a voter, citizen, tax payer, or self-interested resident?," Transportation, Springer, vol. 47(6), pages 2981-3030, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Follett, Lendie & Naald, Brian Vander, 2023. "Heterogeneity in choice experiment data: A Bayesian investigation," Journal of choice modelling, Elsevier, vol. 46(C).
    2. John Buckell & David A Hensher & Stephane Hess, 2021. "Kicking the habit is hard: A hybrid choice model investigation into the role of addiction in smoking behavior," Health Economics, John Wiley & Sons, Ltd., vol. 30(1), pages 3-19, January.
    3. Li, Zheng & Hensher, David A. & Zeng, Jingjing, 2022. "Travel choice behaviour under uncertainty in real-market settings: A source-dependent utility approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    4. David A. Hensher & Edward Wei & Wen Liu & Loan Ho & Chinh Ho, 2023. "Development of a practical aggregate spatial road freight modal demand model system for truck and commodity movements with an application of a distance-based charging regime," Transportation, Springer, vol. 50(3), pages 1031-1071, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Thomas E. Guerrero & C. Angelo Guevara & Elisabetta Cherchi & Juan de Dios Ortúzar, 2021. "Addressing endogeneity in strategic urban mode choice models," Transportation, Springer, vol. 48(4), pages 2081-2102, August.
    2. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    3. Guevara, C. Angelo, 2018. "Overidentification tests for the exogeneity of instruments in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 241-253.
    4. Guevara, C. Angelo & Tirachini, Alejandro & Hurtubia, Ricardo & Dekker, Thijs, 2020. "Correcting for endogeneity due to omitted crowding in public transport choice using the Multiple Indicator Solution (MIS) method," Transportation Research Part A: Policy and Practice, Elsevier, vol. 137(C), pages 472-484.
    5. Guerrero, Thomas E. & Guevara, C. Angelo & Cherchi, Elisabetta & Ortúzar, Juan de Dios, 2022. "Characterizing the impact of discrete indicators to correct for endogeneity in discrete choice models," Journal of choice modelling, Elsevier, vol. 42(C).
    6. Fukushi, Mitsuyoshi & Delgado, Felipe & Raveau, Sebastián, 2024. "Impact of omitted variable and simultaneous estimation endogeneity in choice-based revenue management systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 179(C).
    7. Danaf, Mazen & Guevara, C. Angelo & Ben-Akiva, Moshe, 2023. "A control-function correction for endogeneity in random coefficients models: The case of choice-based recommender systems," Journal of choice modelling, Elsevier, vol. 46(C).
    8. Ahn, Soojung & Steinbach, Sandro, 2022. "COVID-19 Trade Actions and Their Impact on the Agricultural and Food Sector," 2023 Allied Social Sciences Association (ASSA) Annual Meeting, January 6-8, 2023, New Orleans, Louisiana 316789, Agricultural and Applied Economics Association.
    9. David A. Hensher & Edward Wei & Wen Liu & Loan Ho & Chinh Ho, 2023. "Development of a practical aggregate spatial road freight modal demand model system for truck and commodity movements with an application of a distance-based charging regime," Transportation, Springer, vol. 50(3), pages 1031-1071, June.
    10. Sarrias, Mauricio, 2021. "A two recursive equation model to correct for endogeneity in latent class binary probit models," Journal of choice modelling, Elsevier, vol. 40(C).
    11. Amil Petrin & Kenneth Train, 2003. "Omitted Product Attributes in Discrete Choice Models," NBER Working Papers 9452, National Bureau of Economic Research, Inc.
    12. Joanna Mazur & Katarzyna Śledziewska & Damian Zieba, 2018. "Regulation of Geo-blocking: does it address the problem of low intraEU iTrade?," Working Papers 2018-20, Faculty of Economic Sciences, University of Warsaw.
    13. Soojung Ahn & Sandro Steinbach, 2023. "The impact of COVID‐19 trade measures on agricultural and food trade," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(2), pages 911-927, June.
    14. Jonathan R. McFadden & Alicia Rosburg & Eric Njuki, 2022. "Information inputs and technical efficiency in midwest corn production: evidence from farmers' use of yield and soil maps," American Journal of Agricultural Economics, John Wiley & Sons, vol. 104(2), pages 589-612, March.
    15. Guevara, C. Angelo & Hess, Stephane, 2019. "A control-function approach to correct for endogeneity in discrete choice models estimated on SP-off-RP data and contrasts with an earlier FIML approach by Train & Wilson," Transportation Research Part B: Methodological, Elsevier, vol. 123(C), pages 224-239.
    16. Wiktor Budziński & Mikołaj Czajkowski, 2018. "Hybrid choice models vs. endogeneity of indicator variables: a Monte Carlo investigation," Working Papers 2018-21, Faculty of Economic Sciences, University of Warsaw.
    17. Nathan Delacrétaz & Bruno Lanz & Jeremy van Dijk, 2020. "The chicken or the egg: Technology adoption and network infrastructure in the market for electric vehicles," IRENE Working Papers 20-08, IRENE Institute of Economic Research.
    18. Helveston, John Paul & Feit, Elea McDonnell & Michalek, Jeremy J., 2018. "Pooling stated and revealed preference data in the presence of RP endogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 109(C), pages 70-89.
    19. Guevara, C. Angelo, 2015. "Critical assessment of five methods to correct for endogeneity in discrete-choice models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 82(C), pages 240-254.
    20. Danaf, Mazen & Guevara, Angelo & Atasoy, Bilge & Ben-Akiva, Moshe, 2020. "Endogeneity in adaptive choice contexts: Choice-based recommender systems and adaptive stated preferences surveys," Journal of choice modelling, Elsevier, vol. 34(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:48:y:2021:i:5:d:10.1007_s11116-020-10149-1. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.