IDEAS home Printed from https://ideas.repec.org/a/eee/eejocm/v46y2023ics1755534522000550.html
   My bibliography  Save this article

Heterogeneity in choice experiment data: A Bayesian investigation

Author

Listed:
  • Follett, Lendie
  • Naald, Brian Vander

Abstract

Discrete mixture (DM) models recognize the presence of heterogeneity across individuals in a given population. In the context of a public land use discrete choice experiment, we use DM models to allow for respondent behavior to probabilistically mix over multiple competing process heuristics. We pairwise combine the Random Utility Model (RUM), Contextual Concavity Model (CCM), and Random Regret Minimization (RRM) heuristic into three DM models, in which the probability of an individual adhering to a particular heuristic is modeled as a function of sociodemographic characteristics. We present a comprehensive Bayesian analysis for which we explicitly describe prior selection, inferential procedures, and model comparison metrics. We use a fully Bayesian information criterion to rank the models. We find evidence that responses are best modeled using random regret. After accounting for preference heterogeneity, the DM models estimate two latent groups of decision makers. For the DM models, we develop a novel algorithm to calculate posterior-weighted willingness to pay estimates for improvements in different public park amenities in Polk County, Iowa.

Suggested Citation

  • Follett, Lendie & Naald, Brian Vander, 2023. "Heterogeneity in choice experiment data: A Bayesian investigation," Journal of choice modelling, Elsevier, vol. 46(C).
  • Handle: RePEc:eee:eejocm:v:46:y:2023:i:c:s1755534522000550
    DOI: 10.1016/j.jocm.2022.100398
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1755534522000550
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jocm.2022.100398?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Admasu, Wubante Fetene & Van Passel, Steven & Nyssen, Jan & Minale, Amare Sewnet & Tsegaye, Enyew Adgo, 2021. "Eliciting farmers’ preferences and willingness to pay for land use attributes in Northwest Ethiopia: A discrete choice experiment study," Land Use Policy, Elsevier, vol. 109(C).
    2. Mara Thiene & Marco Boeri & Caspar Chorus, 2012. "Random Regret Minimization: Exploration of a New Choice Model for Environmental and Resource Economics," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 51(3), pages 413-429, March.
    3. Bechler, Georg & Steinhardt, Claudius & Mackert, Jochen & Klein, Robert, 2021. "Product line optimization in the presence of preferences for compromise alternatives," European Journal of Operational Research, Elsevier, vol. 288(3), pages 902-917.
    4. David A. Hensher & Camila Balbontin & William H. Greene & Joffre Swait, 2021. "Experience as a conditioning effect on choice: Does it matter whether it is exogenous or endogenous?," Transportation, Springer, vol. 48(5), pages 2825-2855, October.
    5. Boeri, Marco & Longo, Alberto, 2017. "The importance of regret minimization in the choice for renewable energy programmes: Evidence from a discrete choice experiment," Energy Economics, Elsevier, vol. 63(C), pages 253-260.
    6. Stephane Hess & Amanda Stathopoulos & Andrew Daly, 2012. "Allowing for heterogeneous decision rules in discrete choice models: an approach and four case studies," Transportation, Springer, vol. 39(3), pages 565-591, May.
    7. Waiyan Leong & David Alan Hensher, 2012. "Embedding Decision Heuristics in Discrete Choice Models: A Review," Transport Reviews, Taylor & Francis Journals, vol. 32(3), pages 313-331, February.
    8. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2019. "How to better represent preferences in choice models: The contributions to preference heterogeneity attributable to the presence of process heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 218-248.
    9. Craig E. Landry & Alyson R. Lewis & Haiyong Liu & Hans Vogelsong, 2016. "Addressing Onsite Sampling in Analysis of Recreation Demand: Economic Value and Impact of Visitation to Cape Hatteras National Seashore," Marine Resource Economics, University of Chicago Press, vol. 31(3), pages 301-322.
    10. Caspar Chorus & Michel Bierlaire, 2013. "An empirical comparison of travel choice models that capture preferences for compromise alternatives," Transportation, Springer, vol. 40(3), pages 549-562, May.
    11. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2017. "Is there a systematic relationship between random parameters and process heuristics?," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 160-177.
    12. Schaak, Henning & Musshoff, Oliver, 2020. "Public preferences for pasture landscapes in Germany—A latent class analysis of a nationwide discrete choice experiment," Land Use Policy, Elsevier, vol. 91(C).
    13. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2017. "Integrating attribute non-attendance and value learning with risk attitudes and perceptual conditioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 97(C), pages 172-191.
    14. Robert J. Johnston & Kevin J. Boyle & Wiktor (Vic) Adamowicz & Jeff Bennett & Roy Brouwer & Trudy Ann Cameron & W. Michael Hanemann & Nick Hanley & Mandy Ryan & Riccardo Scarpa & Roger Tourangeau & Ch, 2017. "Contemporary Guidance for Stated Preference Studies," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(2), pages 319-405.
    15. Angelika van der Linde, 2005. "DIC in variable selection," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 59(1), pages 45-56, February.
    16. Chorus, Caspar & van Cranenburgh, Sander & Dekker, Thijs, 2014. "Random regret minimization for consumer choice modeling: Assessment of empirical evidence," Journal of Business Research, Elsevier, vol. 67(11), pages 2428-2436.
    17. Dekker, Thijs, 2014. "Indifference based value of time measures for Random Regret Minimisation models," Journal of choice modelling, Elsevier, vol. 12(C), pages 10-20.
    18. Boeri, Marco & Scarpa, Riccardo & Chorus, Caspar G., 2014. "Stated choices and benefit estimates in the context of traffic calming schemes: Utility maximization, regret minimization, or both?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 61(C), pages 121-135.
    19. van Cranenburgh, Sander & Guevara, Cristian Angelo & Chorus, Caspar G., 2015. "New insights on random regret minimization models," Transportation Research Part A: Policy and Practice, Elsevier, vol. 74(C), pages 91-109.
    20. Gonzalez-Valdes, Felipe & Heydecker, Benjamin G. & Ortúzar, Juan de Dios, 2022. "Quantifying behavioural difference in latent class models to assess empirical identifiability: Analytical development and application to multiple heuristics," Journal of choice modelling, Elsevier, vol. 43(C).
    21. Gonzalez-Valdes, Felipe & Raveau, Sebastián, 2018. "Identifying the presence of heterogeneous discrete choice heuristics at an individual level," Journal of choice modelling, Elsevier, vol. 28(C), pages 28-40.
    22. Riccardo Scarpa & Cristiano Franceschinis & Mara Thiene, 2021. "Logit Mixed Logit Under Asymmetry and Multimodality of WTP: A Monte Carlo Evaluation," American Journal of Agricultural Economics, John Wiley & Sons, vol. 103(2), pages 643-662, March.
    23. Caspar G. Chorus, 2014. "Capturing alternative decision rules in travel choice models: a critical discussion," Chapters, in: Stephane Hess & Andrew Daly (ed.), Handbook of Choice Modelling, chapter 13, pages 290-310, Edward Elgar Publishing.
    24. Hensher, David A. & Balbontin, Camila & Collins, Andrew T., 2018. "Heterogeneity in decision processes: Embedding extremeness aversion, risk attitude and perceptual conditioning in multiple process rules choice making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 316-325.
    25. Leong, Waiyan & Hensher, David A., 2012. "Embedding multiple heuristics into choice models: An exploratory analysis," Journal of choice modelling, Elsevier, vol. 5(3), pages 131-144.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazagli, Evanthia & de Lapparent, Matthieu, 2023. "A discrete choice modeling framework of heterogenous decision rules accounting for non-trading behavior," Journal of choice modelling, Elsevier, vol. 48(C).
    2. John Buckell & Vrinda Vasavada & Sarah Wordsworth & Dean A. Regier & Matthew Quaife, 2022. "Utility maximization versus regret minimization in health choice behavior: Evidence from four datasets," Health Economics, John Wiley & Sons, Ltd., vol. 31(2), pages 363-381, February.
    3. van Cranenburgh, Sander & Chorus, Caspar G., 2018. "Does the decision rule matter for large-scale transport models?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 114(PB), pages 338-353.
    4. Gonzalez-Valdes, Felipe & Heydecker, Benjamin G. & Ortúzar, Juan de Dios, 2022. "Quantifying behavioural difference in latent class models to assess empirical identifiability: Analytical development and application to multiple heuristics," Journal of choice modelling, Elsevier, vol. 43(C).
    5. Balbontin, Camila & Hensher, David A. & Collins, Andrew T., 2019. "How to better represent preferences in choice models: The contributions to preference heterogeneity attributable to the presence of process heterogeneity," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 218-248.
    6. van Cranenburgh, Sander & Rose, John M. & Chorus, Caspar G., 2018. "On the robustness of efficient experimental designs towards the underlying decision rule," Transportation Research Part A: Policy and Practice, Elsevier, vol. 109(C), pages 50-64.
    7. Boeri, Marco & Longo, Alberto, 2017. "The importance of regret minimization in the choice for renewable energy programmes: Evidence from a discrete choice experiment," Energy Economics, Elsevier, vol. 63(C), pages 253-260.
    8. Hensher, David A. & Balbontin, Camila & Collins, Andrew T., 2018. "Heterogeneity in decision processes: Embedding extremeness aversion, risk attitude and perceptual conditioning in multiple process rules choice making," Transportation Research Part A: Policy and Practice, Elsevier, vol. 111(C), pages 316-325.
    9. Peng Jing & Mengxuan Zhao & Meiling He & Long Chen, 2018. "Travel Mode and Travel Route Choice Behavior Based on Random Regret Minimization: A Systematic Review," Sustainability, MDPI, vol. 10(4), pages 1-20, April.
    10. Contu, Davide & Strazzera, Elisabetta, 2022. "Testing for saliency-led choice behavior in discrete choice modeling: An application in the context of preferences towards nuclear energy in Italy," Journal of choice modelling, Elsevier, vol. 44(C).
    11. van Cranenburgh, Sander & Meyerhoff, Jürgen & Rehdanz, Katrin & Wunsch, Andrea, 2024. "On the impact of decision rule assumptions in experimental designs on preference recovery: An application to climate change adaptation measures," Journal of choice modelling, Elsevier, vol. 50(C).
    12. Caspar G. Chorus & Sander Cranenburgh, 2018. "Specification of regret-based models of choice behaviour: formal analyses and experimental design based evidence—commentary," Transportation, Springer, vol. 45(1), pages 247-256, January.
    13. Chorus, Caspar & van Cranenburgh, Sander & Dekker, Thijs, 2014. "Random regret minimization for consumer choice modeling: Assessment of empirical evidence," Journal of Business Research, Elsevier, vol. 67(11), pages 2428-2436.
    14. Gonzalez-Valdes, Felipe & Raveau, Sebastián, 2018. "Identifying the presence of heterogeneous discrete choice heuristics at an individual level," Journal of choice modelling, Elsevier, vol. 28(C), pages 28-40.
    15. Chorus, Caspar G., 2014. "A Generalized Random Regret Minimization model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 224-238.
    16. Gonçalves, Tânia & Lourenço-Gomes, Lina & Pinto, Lígia M. Costa, 2022. "The role of attribute non-attendance on consumer decision-making: Theoretical insights and empirical evidence," Economic Analysis and Policy, Elsevier, vol. 76(C), pages 788-805.
    17. van Cranenburgh, Sander & Prato, Carlo G., 2016. "On the robustness of random regret minimization modelling outcomes towards omitted attributes," Journal of choice modelling, Elsevier, vol. 18(C), pages 51-70.
    18. van Cranenburgh, Sander & Collins, Andrew T., 2019. "New software tools for creating stated choice experimental designs efficient for regret minimisation and utility maximisation decision rules," Journal of choice modelling, Elsevier, vol. 31(C), pages 104-123.
    19. Sunghoon Jang & Soora Rasouli & Harry Timmermans, 2017. "Incorporating psycho-physical mapping into random regret choice models: model specifications and empirical performance assessments," Transportation, Springer, vol. 44(5), pages 999-1019, September.
    20. Haghani, Milad & Sarvi, Majid, 2019. "Laboratory experimentation and simulation of discrete direction choices: Investigating hypothetical bias, decision-rule effect and external validity based on aggregate prediction measures," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 134-157.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eejocm:v:46:y:2023:i:c:s1755534522000550. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/journal-of-choice-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.