IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v48y2021i5d10.1007_s11116-020-10129-5.html
   My bibliography  Save this article

Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling

Author

Listed:
  • Andrew Bwambale

    (University of Leeds)

  • Charisma F. Choudhury

    (University of Leeds)

  • Stephane Hess

    (University of Leeds)

  • Md. Shahadat Iqbal

    (Florida International University)

Abstract

Traditional approaches to travel behaviour modelling primarily rely on household travel survey data, which is expensive to collect, resulting in small sample sizes and infrequent updates. Furthermore, such data is prone to reporting errors which can lead to biased parameter estimates and subsequently incorrect predictions. On the other hand, mobile phone call detail records (CDRs), which report the timestamped locations of mobile communication events, have been successfully used in the context of generating travel patterns. However, due to their anonymous nature, such records have not been widely used in developing mathematical models establishing the relationship between the observed travel behaviour and influencing factors such as the attributes of the alternatives and the decision makers. In this paper, we propose a joint modelling framework that utilises the advantages offered by both travel survey data and low-cost CDR data to optimise the prediction capacity of traditional trip generation models. In this regard, we develop a model that jointly explains the reported trips for each individual in the household survey data and ensures that the aggregated zonal trip productions are close to those derived from CDR data. This framework is tested using data from Dhaka. Bangladesh consisting of household survey data (65,419 persons in 16,750 households), mobile phone CDR data (over 600 million records generated by 6.9 million users), and aggregate census data. The model results show that the proposed framework improves the spatial and temporal transferability of the joint models over the base model which relies on household travel survey data alone. This serves as a proof-of-concept that augmenting travel survey data with mobile phone data holds significant promise for the travel behaviour modelling community, not only by saving the cost of data collection, but also improving the prediction capability of the models.

Suggested Citation

  • Andrew Bwambale & Charisma F. Choudhury & Stephane Hess & Md. Shahadat Iqbal, 2021. "Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling," Transportation, Springer, vol. 48(5), pages 2287-2314, October.
  • Handle: RePEc:kap:transp:v:48:y:2021:i:5:d:10.1007_s11116-020-10129-5
    DOI: 10.1007/s11116-020-10129-5
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-020-10129-5
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-020-10129-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gerpott, Torsten J. & Thomas, Sandra, 2014. "Empirical research on mobile Internet usage: A meta-analysis of the literature," Telecommunications Policy, Elsevier, vol. 38(3), pages 291-310.
    2. Pettersson, Pierre & Schmöcker, Jan-Dirk, 2010. "Active ageing in developing countries? – trip generation and tour complexity of older people in Metro Manila," Journal of Transport Geography, Elsevier, vol. 18(5), pages 613-623.
    3. Peter Stopher & Camden FitzGerald & Min Xu, 2007. "Assessing the accuracy of the Sydney Household Travel Survey with GPS," Transportation, Springer, vol. 34(6), pages 723-741, November.
    4. Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling trip generation using mobile phone data: A latent demographics approach," Journal of Transport Geography, Elsevier, vol. 76(C), pages 276-286.
    5. David Pritchard & Eric Miller, 2012. "Advances in population synthesis: fitting many attributes per agent and fitting to household and person margins simultaneously," Transportation, Springer, vol. 39(3), pages 685-704, May.
    6. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    7. Agyemang-Duah, Kwaku & Hall, Fred L., 1997. "Spatial transferability of an ordered response model of trip generation," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(5), pages 389-402, September.
    8. Bhat, Chandra R. & Pulugurta, Vamsi, 1998. "A comparison of two alternative behavioral choice mechanisms for household auto ownership decisions," Transportation Research Part B: Methodological, Elsevier, vol. 32(1), pages 61-75, January.
    9. Johan Barthelemy & Philippe L. Toint, 2013. "Synthetic Population Generation Without a Sample," Transportation Science, INFORMS, vol. 47(2), pages 266-279, May.
    10. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Lu & Srinivasan, Sivaramakrishnan, 2016. "An empirical assessment of factors affecting the accuracy of target-year synthetic populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 247-264.
    2. Sun, Lijun & Erath, Alexander & Cai, Ming, 2018. "A hierarchical mixture modeling framework for population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 199-212.
    3. Nicholas Fournier & Eleni Christofa & Arun Prakash Akkinepally & Carlos Lima Azevedo, 2021. "Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method," Transportation, Springer, vol. 48(2), pages 1061-1087, April.
    4. Saadi, Ismaïl & Mustafa, Ahmed & Teller, Jacques & Farooq, Bilal & Cools, Mario, 2016. "Hidden Markov Model-based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 1-21.
    5. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    6. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    7. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    8. Trond Husby & Olga Ivanova & Mark Thissen, 2018. "Simulating the Joint Distribution of Individuals, Households and Dwellings in Small Areas," International Journal of Microsimulation, International Microsimulation Association, vol. 11(2), pages 169-190.
    9. Nejad, Mohammad Motalleb & Erdogan, Sevgi & Cirillo, Cinzia, 2021. "A statistical approach to small area synthetic population generation as a basis for carless evacuation planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    10. Yu Han & Changjie Chen & Zhong-Ren Peng & Pallab Mozumder, 2022. "Evaluating impacts of coastal flooding on the transportation system using an activity-based travel demand model: a case study in Miami-Dade County, FL," Transportation, Springer, vol. 49(1), pages 163-184, February.
    11. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    12. Lovelace, Robin & Ballas, Dimitris & Watson, Matt, 2014. "A spatial microsimulation approach for the analysis of commuter patterns: from individual to regional levels," Journal of Transport Geography, Elsevier, vol. 34(C), pages 282-296.
    13. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    14. ANTONI Jean-Philippe & VUIDEL Gilles & KLEIN Olivier, 2017. "Generating a located synthetic population of individuals, households, and dwellings," LISER Working Paper Series 2017-07, Luxembourg Institute of Socio-Economic Research (LISER).
    15. Fatmi, Mahmudur Rahman & Habib, Muhammad Ahsanul, 2018. "Microsimulation of vehicle transactions within a life-oriented integrated urban modeling system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 497-512.
    16. Robert Noland & John Polak & Michael Bell & Neil Thorpe, 2003. "How much disruption to activities could fuel shortages cause? – The British fuel crisis of September 2000," Transportation, Springer, vol. 30(4), pages 459-481, November.
    17. Suesse Thomas & Namazi-Rad Mohammad-Reza & Mokhtarian Payam & Barthélemy Johan, 2017. "Estimating Cross-Classified Population Counts of Multidimensional Tables: An Application to Regional Australia to Obtain Pseudo-Census Counts," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1021-1050, December.
    18. Rajesh Paleti & Lacramioara Balan, 2019. "Misclassification in travel surveys and implications to choice modeling: application to household auto ownership decisions," Transportation, Springer, vol. 46(4), pages 1467-1485, August.
    19. Chetan Doddamani & M. Manoj, 2023. "Analysis of the influences of built environment measures on household car and motorcycle ownership decisions in Hubli-Dharwad cities," Transportation, Springer, vol. 50(1), pages 205-243, February.
    20. Zhao, Yuanying & Pawlak, Jacek & Sivakumar, Aruna, 2022. "Theory for socio-demographic enrichment performance using the inverse discrete choice modelling approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 101-134.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:48:y:2021:i:5:d:10.1007_s11116-020-10129-5. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.