IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v48y2021i2d10.1007_s11116-020-10090-3.html
   My bibliography  Save this article

Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method

Author

Listed:
  • Nicholas Fournier

    (University of California)

  • Eleni Christofa

    (University of Massachusetts)

  • Arun Prakash Akkinepally

    (Massachusetts Institute of Technology)

  • Carlos Lima Azevedo

    (Technical University of Denmark)

Abstract

Large scale activity-based simulation models inform a variety of transportation and planning policies using models that often rely on fixed or flexible workplace location in a synthetic population as input to work related activity, participation, and subsequent destination dependent travel decisions. Although discrete choice models can estimate workplace location with greater flexibility, disaggregate data available (e.g., travel surveys) are often too sparse to estimate workplace location at sufficient spatial detail. Alternatively, aggregated employment data are often readily available at higher spatial resolutions, but are typically only used in separately estimated ad hoc models, which introduces error if the estimations have divergent solutions. This paper’s primary contribution is to reduce error by integrating population synthesis and workplace assignment, yielding a synthetic population with home and work locations included as attributes. The two are integrated using additional variables shared between population and workplace assignment (i.e., industry sector), but this increased matrix size can render conventional multilevel person-household re-weighting methods computational intractable. A secondary contribution is to mitigate this scalability challenge using more efficient optimization-based re-weighting approaches, substantially reducing computation time. The proposed process is applied to the Greater Boston Area, generating a population of 4.6-million persons within 1.7-million households across 965 census tract zones. The integrated process is compared against conventional ad hoc location assignment process, using both classical and contemporary synthesis techniques of Iterative Proportional Fitting, Markov chain Monte Carlo simulation, and Bayesian Network simulation. The integrated approach yielded an improvement in workplace location assignment, with only modest impact on population accuracy.

Suggested Citation

  • Nicholas Fournier & Eleni Christofa & Arun Prakash Akkinepally & Carlos Lima Azevedo, 2021. "Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method," Transportation, Springer, vol. 48(2), pages 1061-1087, April.
  • Handle: RePEc:kap:transp:v:48:y:2021:i:2:d:10.1007_s11116-020-10090-3
    DOI: 10.1007/s11116-020-10090-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-020-10090-3
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-020-10090-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bassolas, Aleix & Ramasco, José J. & Herranz, Ricardo & Cantú-Ros, Oliva G., 2019. "Mobile phone records to feed activity-based travel demand models: MATSim for studying a cordon toll policy in Barcelona," Transportation Research Part A: Policy and Practice, Elsevier, vol. 121(C), pages 56-74.
    2. Fred Glover, 1989. "Tabu Search---Part I," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 190-206, August.
    3. Saadi, Ismaïl & Mustafa, Ahmed & Teller, Jacques & Farooq, Bilal & Cools, Mario, 2016. "Hidden Markov Model-based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 1-21.
    4. Recker, W. W., 2001. "A bridge between travel demand modeling and activity-based travel analysis," Transportation Research Part B: Methodological, Elsevier, vol. 35(5), pages 481-506, June.
    5. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    6. Lovelace, Robin & Ballas, Dimitris & Watson, Matt, 2014. "A spatial microsimulation approach for the analysis of commuter patterns: from individual to regional levels," Journal of Transport Geography, Elsevier, vol. 34(C), pages 282-296.
    7. Francisco Martínez & Pedro Donoso, 2010. "The MUSSA II Land Use Auction Equilibrium Model," Advances in Spatial Science, in: Francesca Pagliara & John Preston & David Simmonds (ed.), Residential Location Choice, pages 99-113, Springer.
    8. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    9. David Pritchard & Eric Miller, 2012. "Advances in population synthesis: fitting many attributes per agent and fitting to household and person margins simultaneously," Transportation, Springer, vol. 39(3), pages 685-704, May.
    10. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    11. Sun, Lijun & Erath, Alexander & Cai, Ming, 2018. "A hierarchical mixture modeling framework for population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 199-212.
    12. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    13. Johan Barthelemy & Philippe L. Toint, 2013. "Synthetic Population Generation Without a Sample," Transportation Science, INFORMS, vol. 47(2), pages 266-279, May.
    14. Filippo Simini & Marta C. González & Amos Maritan & Albert-László Barabási, 2012. "A universal model for mobility and migration patterns," Nature, Nature, vol. 484(7392), pages 96-100, April.
    15. Fred Glover, 1990. "Tabu Search—Part II," INFORMS Journal on Computing, INFORMS, vol. 2(1), pages 4-32, February.
    16. Dong, Xiaojing & Ben-Akiva, Moshe E. & Bowman, John L. & Walker, Joan L., 2006. "Moving from trip-based to activity-based measures of accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 40(2), pages 163-180, February.
    17. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nejad, Mohammad Motalleb & Erdogan, Sevgi & Cirillo, Cinzia, 2021. "A statistical approach to small area synthetic population generation as a basis for carless evacuation planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    2. Sun, Lijun & Erath, Alexander & Cai, Ming, 2018. "A hierarchical mixture modeling framework for population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 199-212.
    3. Johan Barthelemy & Philippe L. Toint, 2013. "Synthetic Population Generation Without a Sample," Transportation Science, INFORMS, vol. 47(2), pages 266-279, May.
    4. Yu Han & Changjie Chen & Zhong-Ren Peng & Pallab Mozumder, 2022. "Evaluating impacts of coastal flooding on the transportation system using an activity-based travel demand model: a case study in Miami-Dade County, FL," Transportation, Springer, vol. 49(1), pages 163-184, February.
    5. Mohammad Javad Feizollahi & Igor Averbakh, 2014. "The Robust (Minmax Regret) Quadratic Assignment Problem with Interval Flows," INFORMS Journal on Computing, INFORMS, vol. 26(2), pages 321-335, May.
    6. C N Potts & V A Strusevich, 2009. "Fifty years of scheduling: a survey of milestones," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(1), pages 41-68, May.
    7. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    8. Cazzaro, Davide & Fischetti, Martina & Fischetti, Matteo, 2020. "Heuristic algorithms for the Wind Farm Cable Routing problem," Applied Energy, Elsevier, vol. 278(C).
    9. Huang, Yeran & Yang, Lixing & Tang, Tao & Gao, Ziyou & Cao, Fang, 2017. "Joint train scheduling optimization with service quality and energy efficiency in urban rail transit networks," Energy, Elsevier, vol. 138(C), pages 1124-1147.
    10. B Dengiz & C Alabas-Uslu & O Dengiz, 2009. "Optimization of manufacturing systems using a neural network metamodel with a new training approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(9), pages 1191-1197, September.
    11. S-W Lin & K-C Ying, 2008. "A hybrid approach for single-machine tardiness problems with sequence-dependent setup times," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(8), pages 1109-1119, August.
    12. Joseph B. Mazzola & Robert H. Schantz, 1997. "Multiple‐facility loading under capacity‐based economies of scope," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(3), pages 229-256, April.
    13. Abdmouleh, Zeineb & Gastli, Adel & Ben-Brahim, Lazhar & Haouari, Mohamed & Al-Emadi, Nasser Ahmed, 2017. "Review of optimization techniques applied for the integration of distributed generation from renewable energy sources," Renewable Energy, Elsevier, vol. 113(C), pages 266-280.
    14. Masoud Yaghini & Mohammad Karimi & Mohadeseh Rahbar, 2015. "A set covering approach for multi-depot train driver scheduling," Journal of Combinatorial Optimization, Springer, vol. 29(3), pages 636-654, April.
    15. Chris S. K. Leung & Henry Y. K. Lau, 2018. "Multiobjective Simulation-Based Optimization Based on Artificial Immune Systems for a Distribution Center," Journal of Optimization, Hindawi, vol. 2018, pages 1-15, May.
    16. Ilfat Ghamlouche & Teodor Gabriel Crainic & Michel Gendreau, 2003. "Cycle-Based Neighbourhoods for Fixed-Charge Capacitated Multicommodity Network Design," Operations Research, INFORMS, vol. 51(4), pages 655-667, August.
    17. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    18. Andaryan, Abdullah Zareh & Mousighichi, Kasra & Ghaffarinasab, Nader, 2024. "A heuristic approach to the stochastic capacitated single allocation hub location problem with Bernoulli demands," European Journal of Operational Research, Elsevier, vol. 312(3), pages 954-968.
    19. Panta Lučić & Dušan Teodorović, 2007. "Metaheuristics approach to the aircrew rostering problem," Annals of Operations Research, Springer, vol. 155(1), pages 311-338, November.
    20. Haluk Yapicioglu, 2018. "Multiperiod Multi Traveling Salesmen Problem Considering Time Window Constraints with an Application to a Real World Case," Networks and Spatial Economics, Springer, vol. 18(4), pages 773-801, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:48:y:2021:i:2:d:10.1007_s11116-020-10090-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.