IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v76y2019icp276-286.html
   My bibliography  Save this article

Modelling trip generation using mobile phone data: A latent demographics approach

Author

Listed:
  • Bwambale, Andrew
  • Choudhury, Charisma F.
  • Hess, Stephane

Abstract

Traditional approaches to trip generation modelling rely on household travel surveys which are expensive and prone to reporting errors. On the other hand, mobile phone data, where spatio-temporal trajectories of millions of users are passively recorded has recently emerged as a promising input for transport analyses. However, such data has primarily been used for the development of human mobility models, extraction of statistics on human mobility behaviour, and origin-destination matrix estimation as opposed to the development of econometric models of travel demand. This is primarily due to the exclusion of user demographics from mobile phone data made available for research (owing to privacy reasons). In this study, we address this limitation by proposing a hybrid trip generation model framework where demographic groups are treated as latent or unobserved. The proposed model first predicts the demographic group membership probabilities of individuals based on their phone usage characteristics and then uses these probabilities as weights inside a latent class model for trip generation, with different classes representing different socio-demographic groups. The model is calibrated using the call log data of a sub-sample of users with known demographics and trip rates extracted from their GSM mobility data. The performance of the hybrid model is compared with that of a traditional trip generation model which uses observed demographic variables to validate the proposed methodology. This comparative analysis shows that the model fit and the prediction results of the hybrid model are close to those of the traditional model. The research thus serves as a proof-of-concept that the mobile phone data can be successfully used to develop econometric models of transport planning by having additional information for a subset of the users.

Suggested Citation

  • Bwambale, Andrew & Choudhury, Charisma F. & Hess, Stephane, 2019. "Modelling trip generation using mobile phone data: A latent demographics approach," Journal of Transport Geography, Elsevier, vol. 76(C), pages 276-286.
  • Handle: RePEc:eee:jotrge:v:76:y:2019:i:c:p:276-286
    DOI: 10.1016/j.jtrangeo.2017.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317301382
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2017.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Vickerman, R. W. & Barmby, T. A., 1985. "Household trip generation choice--Alternative empirical approaches," Transportation Research Part B: Methodological, Elsevier, vol. 19(6), pages 471-479, December.
    2. Marta C. González & César A. Hidalgo & Albert-László Barabási, 2009. "Understanding individual human mobility patterns," Nature, Nature, vol. 458(7235), pages 238-238, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wadud, Zia & Mattioli, Giulio, 2021. "Fully automated vehicles: A cost-based analysis of the share of ownership and mobility services, and its socio-economic determinants," Transportation Research Part A: Policy and Practice, Elsevier, vol. 151(C), pages 228-244.
    2. Zhao, Yuanying & Pawlak, Jacek & Sivakumar, Aruna, 2022. "Theory for socio-demographic enrichment performance using the inverse discrete choice modelling approach," Transportation Research Part B: Methodological, Elsevier, vol. 155(C), pages 101-134.
    3. Burcu Ozgun & Tom Broekel, 2024. "Saved by the news? COVID-19 in German news and its relationship with regional mobility behaviour," Regional Studies, Taylor & Francis Journals, vol. 58(2), pages 365-380, February.
    4. Andrew Bwambale & Charisma F. Choudhury & Stephane Hess & Md. Shahadat Iqbal, 2021. "Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling," Transportation, Springer, vol. 48(5), pages 2287-2314, October.
    5. Xing, Jiping & Wu, Wei & Cheng, Qixiu & Liu, Ronghui, 2022. "Traffic state estimation of urban road networks by multi-source data fusion: Review and new insights," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 595(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jeong-Hui Park & Eunhye Yoo & Youngdeok Kim & Jung-Min Lee, 2021. "What Happened Pre- and during COVID-19 in South Korea? Comparing Physical Activity, Sleep Time, and Body Weight Status," IJERPH, MDPI, vol. 18(11), pages 1-13, May.
    2. Matteo Böhm & Mirco Nanni & Luca Pappalardo, 2022. "Gross polluters and vehicle emissions reduction," Nature Sustainability, Nature, vol. 5(8), pages 699-707, August.
    3. David Kofoed Wind & Piotr Sapiezynski & Magdalena Anna Furman & Sune Lehmann, 2016. "Inferring Stop-Locations from WiFi," PLOS ONE, Public Library of Science, vol. 11(2), pages 1-15, February.
    4. Zhou, Xingang & Yeh, Anthony G.O. & Yue, Yang, 2018. "Spatial variation of self-containment and jobs-housing balance in Shenzhen using cellphone big data," Journal of Transport Geography, Elsevier, vol. 68(C), pages 102-108.
    5. Zheng Yan & Wenqian Robertson & Yaosheng Lou & Tom W. Robertson & Sung Yong Park, 2021. "Finding leading scholars in mobile phone behavior: a mixed-method analysis of an emerging interdisciplinary field," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(12), pages 9499-9517, December.
    6. Duan, Zhengyu & Zhao, Haoran & Li, Zhenming, 2023. "Non-linear effects of built environment and socio-demographics on activity space," Journal of Transport Geography, Elsevier, vol. 111(C).
    7. Elisa Frutos-Bernal & Ángel Martín del Rey & Irene Mariñas-Collado & María Teresa Santos-Martín, 2022. "An Analysis of Travel Patterns in Barcelona Metro Using Tucker3 Decomposition," Mathematics, MDPI, vol. 10(7), pages 1-17, March.
    8. Zhai, Wei & Bai, Xueyin & Peng, Zhong-ren & Gu, Chaolin, 2019. "From edit distance to augmented space-time-weighted edit distance: Detecting and clustering patterns of human activities in Puget Sound region," Journal of Transport Geography, Elsevier, vol. 78(C), pages 41-55.
    9. Khajehnejad, Moein, 2019. "Efficiency of long-range navigation on Treelike fractals," Chaos, Solitons & Fractals, Elsevier, vol. 122(C), pages 102-110.
    10. Chaogui Kang & Yu Liu & Diansheng Guo & Kun Qin, 2015. "A Generalized Radiation Model for Human Mobility: Spatial Scale, Searching Direction and Trip Constraint," PLOS ONE, Public Library of Science, vol. 10(11), pages 1-11, November.
    11. Yifeng Liu & Yuan Lai, 2024. "Analyzing jogging activity patterns and adaptation to public health regulation," Environment and Planning B, , vol. 51(3), pages 670-688, March.
    12. Li, Ze-Tao & Nie, Wei-Peng & Cai, Shi-Min & Zhao, Zhi-Dan & Zhou, Tao, 2023. "Exploring the topological characteristics of urban trip networks based on taxi trajectory data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 609(C).
    13. Claudio Gariazzo & Armando Pelliccioni & Maria Paola Bogliolo, 2019. "Spatiotemporal Analysis of Urban Mobility Using Aggregate Mobile Phone Derived Presence and Demographic Data: A Case Study in the City of Rome, Italy," Data, MDPI, vol. 4(1), pages 1-25, January.
    14. Han Wang & Damien Fay & Kenneth N. Brown & Liam Kilmartin, 2016. "Modelling revenue generation in a dynamically priced mobile telephony service," Telecommunication Systems: Modelling, Analysis, Design and Management, Springer, vol. 62(4), pages 711-734, August.
    15. Toru Nakamura & Toru Takumi & Atsuko Takano & Fumiyuki Hatanaka & Yoshiharu Yamamoto, 2013. "Characterization and Modeling of Intermittent Locomotor Dynamics in Clock Gene-Deficient Mice," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-8, March.
    16. Fangye Du & Jiaoe Wang & Liang Mao & Jian Kang, 2024. "Daily rhythm of urban space usage: insights from the nexus of urban functions and human mobility," Palgrave Communications, Palgrave Macmillan, vol. 11(1), pages 1-10, December.
    17. Torsten Thalheim & Tyll Krüger & Jörg Galle, 2022. "Indirect Virus Transmission via Fomites Can Counteract Lock-Down Effectiveness," IJERPH, MDPI, vol. 19(21), pages 1-14, October.
    18. D. Woods & A. Cunningham & C. E. Utazi & M. Bondarenko & L. Shengjie & G. E. Rogers & P. Koper & C. W. Ruktanonchai & E. zu Erbach-Schoenberg & A. J. Tatem & J. Steele & A. Sorichetta, 2022. "Exploring methods for mapping seasonal population changes using mobile phone data," Palgrave Communications, Palgrave Macmillan, vol. 9(1), pages 1-17, December.
    19. Olle Järv & Kerli Müürisepp & Rein Ahas & Ben Derudder & Frank Witlox, 2015. "Ethnic differences in activity spaces as a characteristic of segregation: A study based on mobile phone usage in Tallinn, Estonia," Urban Studies, Urban Studies Journal Limited, vol. 52(14), pages 2680-2698, November.
    20. Francis Rathinam & Sayak Khatua & Zeba Siddiqui & Manya Malik & Pallavi Duggal & Samantha Watson & Xavier Vollenweider, 2021. "Using big data for evaluating development outcomes: A systematic map," Campbell Systematic Reviews, John Wiley & Sons, vol. 17(3), September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:76:y:2019:i:c:p:276-286. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.