IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v114y2018icp199-212.html
   My bibliography  Save this article

A hierarchical mixture modeling framework for population synthesis

Author

Listed:
  • Sun, Lijun
  • Erath, Alexander
  • Cai, Ming

Abstract

Synthetic population is a key input to agent-based urban/transportation microsimulation models. The objective of population synthesis is to reproduce the underlying statistical properties of real population based on available microsamples and marginal distributions. However, characterizing the joint associations among a large set of attributes is challenging because of the curse of dimensionality, in particular when attributes are organized in a hierarchical household-individual structure. In this paper, we use a hierarchical mixture model to characterize the joint distribution of both household and individual attributes. Based on this model, we propose a framework of generating representative household structures in population synthesis. The framework integrates three models: (1) probabilistic tensor factorization, (2) multilevel latent class model, and (3) rejection sampling. With this framework, one can generalize not only the associations of within- and cross-level attributes, but also reproduce structural relationships among household members (e.g., husband-wife). As a case study, we implement this framework based on the household interview travel survey (HITS) data of Singapore, and then use the inferred model to generate a synthetic population pool. This model demonstrates great potential in reproducing the underlying statistical distribution of real population. The generated synthetic population can serve as a replacement for census in developing agent-based models, with privacy and confidentiality being protected and preserved.

Suggested Citation

  • Sun, Lijun & Erath, Alexander & Cai, Ming, 2018. "A hierarchical mixture modeling framework for population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 199-212.
  • Handle: RePEc:eee:transb:v:114:y:2018:i:c:p:199-212
    DOI: 10.1016/j.trb.2018.06.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261517308615
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2018.06.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Saadi, Ismaïl & Mustafa, Ahmed & Teller, Jacques & Farooq, Bilal & Cools, Mario, 2016. "Hidden Markov Model-based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 1-21.
    2. David Pritchard & Eric Miller, 2012. "Advances in population synthesis: fitting many attributes per agent and fitting to household and person margins simultaneously," Transportation, Springer, vol. 39(3), pages 685-704, May.
    3. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    4. P Williamson & M Birkin & P H Rees, 1998. "The Estimation of Population Microdata by Using Data from Small Area Statistics and Samples of Anonymised Records," Environment and Planning A, , vol. 30(5), pages 785-816, May.
    5. Sun, Lijun & Axhausen, Kay W., 2016. "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 511-524.
    6. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    7. Johan Barthelemy & Philippe L. Toint, 2013. "Synthetic Population Generation Without a Sample," Transportation Science, INFORMS, vol. 47(2), pages 266-279, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Khachman & Catherine Morency & Francesco Ciari, 2024. "Integrated multiresolution framework for spatialized population synthesis," Transportation, Springer, vol. 51(3), pages 823-852, June.
    2. Nicholas Fournier & Eleni Christofa & Arun Prakash Akkinepally & Carlos Lima Azevedo, 2021. "Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method," Transportation, Springer, vol. 48(2), pages 1061-1087, April.
    3. Stanislav S. Borysov & Jeppe Rich, 2021. "Introducing synthetic pseudo panels: application to transport behaviour dynamics," Transportation, Springer, vol. 48(5), pages 2493-2520, October.
    4. Nejad, Mohammad Motalleb & Erdogan, Sevgi & Cirillo, Cinzia, 2021. "A statistical approach to small area synthetic population generation as a basis for carless evacuation planning," Journal of Transport Geography, Elsevier, vol. 90(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicholas Fournier & Eleni Christofa & Arun Prakash Akkinepally & Carlos Lima Azevedo, 2021. "Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method," Transportation, Springer, vol. 48(2), pages 1061-1087, April.
    2. Ma, Lu & Srinivasan, Sivaramakrishnan, 2016. "An empirical assessment of factors affecting the accuracy of target-year synthetic populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 247-264.
    3. Saadi, Ismaïl & Mustafa, Ahmed & Teller, Jacques & Farooq, Bilal & Cools, Mario, 2016. "Hidden Markov Model-based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 1-21.
    4. Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
    5. Andrew Bwambale & Charisma F. Choudhury & Stephane Hess & Md. Shahadat Iqbal, 2021. "Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling," Transportation, Springer, vol. 48(5), pages 2287-2314, October.
    6. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    7. Yu Han & Changjie Chen & Zhong-Ren Peng & Pallab Mozumder, 2022. "Evaluating impacts of coastal flooding on the transportation system using an activity-based travel demand model: a case study in Miami-Dade County, FL," Transportation, Springer, vol. 49(1), pages 163-184, February.
    8. Trond Husby & Olga Ivanova & Mark Thissen, 2018. "Simulating the Joint Distribution of Individuals, Households and Dwellings in Small Areas," International Journal of Microsimulation, International Microsimulation Association, vol. 11(2), pages 169-190.
    9. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    10. Lovelace, Robin & Ballas, Dimitris & Watson, Matt, 2014. "A spatial microsimulation approach for the analysis of commuter patterns: from individual to regional levels," Journal of Transport Geography, Elsevier, vol. 34(C), pages 282-296.
    11. Nejad, Mohammad Motalleb & Erdogan, Sevgi & Cirillo, Cinzia, 2021. "A statistical approach to small area synthetic population generation as a basis for carless evacuation planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    12. Martin Johnsen & Oliver Brandt & Sergio Garrido & Francisco C. Pereira, 2020. "Population synthesis for urban resident modeling using deep generative models," Papers 2011.06851, arXiv.org.
    13. Mohamed Khachman & Catherine Morency & Francesco Ciari, 2024. "Integrated multiresolution framework for spatialized population synthesis," Transportation, Springer, vol. 51(3), pages 823-852, June.
    14. ANTONI Jean-Philippe & VUIDEL Gilles & KLEIN Olivier, 2017. "Generating a located synthetic population of individuals, households, and dwellings," LISER Working Paper Series 2017-07, Luxembourg Institute of Socio-Economic Research (LISER).
    15. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    16. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    17. Lopes, Mafalda Mendes & Moura, Filipe & Martinez, Luis M., 2014. "A rule-based approach for determining the plausible universe of electric vehicle buyers in the Lisbon Metropolitan Area," Transportation Research Part A: Policy and Practice, Elsevier, vol. 59(C), pages 22-36.
    18. Stanislav S. Borysov & Jeppe Rich, 2021. "Introducing synthetic pseudo panels: application to transport behaviour dynamics," Transportation, Springer, vol. 48(5), pages 2493-2520, October.
    19. Suesse Thomas & Namazi-Rad Mohammad-Reza & Mokhtarian Payam & Barthélemy Johan, 2017. "Estimating Cross-Classified Population Counts of Multidimensional Tables: An Application to Regional Australia to Obtain Pseudo-Census Counts," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1021-1050, December.
    20. David Pritchard & Eric Miller, 2012. "Advances in population synthesis: fitting many attributes per agent and fitting to household and person margins simultaneously," Transportation, Springer, vol. 39(3), pages 685-704, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:114:y:2018:i:c:p:199-212. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.