IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v13y2021i3p1587-d492034.html
   My bibliography  Save this article

Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service

Author

Listed:
  • Jian Liu

    (Chongqing University, Chongqing 400044, China
    Chongqing Geomatics and Remote Sensing Center, Chongqing 401147, China
    University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, China)

  • Xiaosu Ma

    (School of Architecture, Southeast University, Nanjing 210096, China)

  • Yi Zhu

    (School of Public Economics and Administration, Shanghai University of Finance and Economics, Shanghai 200433, China)

  • Jing Li

    (Chongqing Geomatics and Remote Sensing Center, Chongqing 401147, China)

  • Zong He

    (Chongqing Geomatics and Remote Sensing Center, Chongqing 401147, China)

  • Sheng Ye

    (University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing 400714, China)

Abstract

Geographically fine-grained population information is critical for various urban planning and management tasks. This is especially the case for the Chinese cities that are undergoing rapid development and transformation. However, detailed population data are rarely available in comprehensive and timely means. Therefore, appropriate approaches are needed to estimate populations from available data sets in a systematic way to support the continuous demand from urban analytics and planning. Population synthesis approaches such as Iterative Proportional Fitting (IPF) were developed to combine microdata samples with marginal statistics about population characteristics at aggregated spatial levels in order to expand the microdata sample into a complete synthetic population. This paper presents the framework for and the implementation of a geospatial platform for supporting the generation and exploration of spatially detailed urban synthetic populations. The platform provides analytical and visualization tools to support the quick generation of a full urban population with critical attributes based on the latest data available. The case of the synthetic population of Chongqing is used to illustrate the population information and types of visualization that are facilitated.

Suggested Citation

  • Jian Liu & Xiaosu Ma & Yi Zhu & Jing Li & Zong He & Sheng Ye, 2021. "Generating and Visualizing Spatially Disaggregated Synthetic Population Using a Web-Based Geospatial Service," Sustainability, MDPI, vol. 13(3), pages 1-16, February.
  • Handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1587-:d:492034
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/13/3/1587/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/13/3/1587/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. de Palma, Andre & Picard, Nathalie & Waddell, Paul, 2007. "Discrete choice models with capacity constraints: An empirical analysis of the housing market of the greater Paris region," Journal of Urban Economics, Elsevier, vol. 62(2), pages 204-230, September.
    2. Saadi, Ismaïl & Mustafa, Ahmed & Teller, Jacques & Farooq, Bilal & Cools, Mario, 2016. "Hidden Markov Model-based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 1-21.
    3. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    4. Johan Barthelemy & Philippe L. Toint, 2013. "Synthetic Population Generation Without a Sample," Transportation Science, INFORMS, vol. 47(2), pages 266-279, May.
    5. Beckman, Richard J. & Baggerly, Keith A. & McKay, Michael D., 1996. "Creating synthetic baseline populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 30(6), pages 415-429, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Khachman & Catherine Morency & Francesco Ciari, 2024. "Integrated multiresolution framework for spatialized population synthesis," Transportation, Springer, vol. 51(3), pages 823-852, June.
    2. Jui-Hung Kao & Wei-Chen Wu & Cheng-Hu Chow & Horng-Twu Liaw, 2021. "The Discussion of Potential Care Needs for Physically and Mentally Disabled Citizens in Taipei City by Using Spatial Analysis," Sustainability, MDPI, vol. 13(5), pages 1-11, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sun, Lijun & Erath, Alexander & Cai, Ming, 2018. "A hierarchical mixture modeling framework for population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 114(C), pages 199-212.
    2. Nicholas Fournier & Eleni Christofa & Arun Prakash Akkinepally & Carlos Lima Azevedo, 2021. "Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method," Transportation, Springer, vol. 48(2), pages 1061-1087, April.
    3. Ma, Lu & Srinivasan, Sivaramakrishnan, 2016. "An empirical assessment of factors affecting the accuracy of target-year synthetic populations," Transportation Research Part A: Policy and Practice, Elsevier, vol. 85(C), pages 247-264.
    4. Andrew Bwambale & Charisma F. Choudhury & Stephane Hess & Md. Shahadat Iqbal, 2021. "Getting the best of both worlds: a framework for combining disaggregate travel survey data and aggregate mobile phone data for trip generation modelling," Transportation, Springer, vol. 48(5), pages 2287-2314, October.
    5. Mohamed Khachman & Catherine Morency & Francesco Ciari, 2024. "Integrated multiresolution framework for spatialized population synthesis," Transportation, Springer, vol. 51(3), pages 823-852, June.
    6. Saadi, Ismaïl & Mustafa, Ahmed & Teller, Jacques & Farooq, Bilal & Cools, Mario, 2016. "Hidden Markov Model-based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 90(C), pages 1-21.
    7. Yu Han & Changjie Chen & Zhong-Ren Peng & Pallab Mozumder, 2022. "Evaluating impacts of coastal flooding on the transportation system using an activity-based travel demand model: a case study in Miami-Dade County, FL," Transportation, Springer, vol. 49(1), pages 163-184, February.
    8. Martin Johnsen & Oliver Brandt & Sergio Garrido & Francisco C. Pereira, 2020. "Population synthesis for urban resident modeling using deep generative models," Papers 2011.06851, arXiv.org.
    9. Stefano Guarino & Enrico Mastrostefano & Massimo Bernaschi & Alessandro Celestini & Marco Cianfriglia & Davide Torre & Lena Rebecca Zastrow, 2021. "Inferring Urban Social Networks from Publicly Available Data," Future Internet, MDPI, vol. 13(5), pages 1-45, April.
    10. He, Brian Y. & Zhou, Jinkai & Ma, Ziyi & Chow, Joseph Y.J. & Ozbay, Kaan, 2020. "Evaluation of city-scale built environment policies in New York City with an emerging-mobility-accessible synthetic population," Transportation Research Part A: Policy and Practice, Elsevier, vol. 141(C), pages 444-467.
    11. Farooq, Bilal & Bierlaire, Michel & Hurtubia, Ricardo & Flötteröd, Gunnar, 2013. "Simulation based population synthesis," Transportation Research Part B: Methodological, Elsevier, vol. 58(C), pages 243-263.
    12. Boakye, Jessica & Guidotti, Roberto & Gardoni, Paolo & Murphy, Colleen, 2022. "The role of transportation infrastructure on the impact of natural hazards on communities," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. ANTONI Jean-Philippe & VUIDEL Gilles & KLEIN Olivier, 2017. "Generating a located synthetic population of individuals, households, and dwellings," LISER Working Paper Series 2017-07, Luxembourg Institute of Socio-Economic Research (LISER).
    14. Trond Husby & Olga Ivanova & Mark Thissen, 2018. "Simulating the Joint Distribution of Individuals, Households and Dwellings in Small Areas," International Journal of Microsimulation, International Microsimulation Association, vol. 11(2), pages 169-190.
    15. Stanislav S. Borysov & Jeppe Rich, 2021. "Introducing synthetic pseudo panels: application to transport behaviour dynamics," Transportation, Springer, vol. 48(5), pages 2493-2520, October.
    16. Nejad, Mohammad Motalleb & Erdogan, Sevgi & Cirillo, Cinzia, 2021. "A statistical approach to small area synthetic population generation as a basis for carless evacuation planning," Journal of Transport Geography, Elsevier, vol. 90(C).
    17. Suesse Thomas & Namazi-Rad Mohammad-Reza & Mokhtarian Payam & Barthélemy Johan, 2017. "Estimating Cross-Classified Population Counts of Multidimensional Tables: An Application to Regional Australia to Obtain Pseudo-Census Counts," Journal of Official Statistics, Sciendo, vol. 33(4), pages 1021-1050, December.
    18. Jason Hawkins & Khandker Nurul Habib, 2023. "A multi-source data fusion framework for joint population, expenditure, and time use synthesis," Transportation, Springer, vol. 50(4), pages 1323-1346, August.
    19. Michel Beine & Marco Delogu & Lionel Ragot, 2020. "The role of fees in foreign education: evidence from Italy [Determinants of international student migration]," Journal of Economic Geography, Oxford University Press, vol. 20(2), pages 571-600.
    20. De Palma, Andre & Motamedi, Kiarash & Picard, Nathalie & Waddell, Paul, 2007. "Accessibility and environmental quality: inequality in the Paris housing market," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 36, pages 47-74.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:13:y:2021:i:3:p:1587-:d:492034. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.