IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i6d10.1007_s11116-018-9881-8.html
   My bibliography  Save this article

Estimating the activity types of transit travelers using smart card transaction data: a case study of Singapore

Author

Listed:
  • Yi Zhu

    (Shanghai University of Finance and Economics)

Abstract

Understanding individual daily activity patterns is essential for travel demand management and urban planning. This research introduces a new method to infer transit riders’ activities from their smart card transaction records. Using Singapore as an example, activity type classification models were built using household travel survey and a rich set of urban built environment measures to reveal the spatial and temporal correspondences that indicate the activity participation of transit riders. The calibrated model is then applied to the transit smart card dataset to extract the embedded activity information. The proposed approach enables to spatially and temporally quantify, visualize, and examine urban activity landscapes in a metropolitan area and provides real-time decision support for the city. This study also demonstrates the potential value of combining new ‘‘big data’’ such as transit smart card data and “small data” such as traditional travel surveys to create better insights of urban travel demand and activity dynamics.

Suggested Citation

  • Yi Zhu, 2020. "Estimating the activity types of transit travelers using smart card transaction data: a case study of Singapore," Transportation, Springer, vol. 47(6), pages 2703-2730, December.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:6:d:10.1007_s11116-018-9881-8
    DOI: 10.1007/s11116-018-9881-8
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-018-9881-8
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-018-9881-8?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Morency, Catherine & Trépanier, Martin & Agard, Bruno, 2007. "Measuring transit use variability with smart-card data," Transport Policy, Elsevier, vol. 14(3), pages 193-203, May.
    2. Neema Nassir & Mark Hickman & Zhen-Liang Ma, 2015. "Activity detection and transfer identification for public transit fare card data," Transportation, Springer, vol. 42(4), pages 683-705, July.
    3. Arentze, Theo A. & Timmermans, Harry J. P., 2004. "A learning-based transportation oriented simulation system," Transportation Research Part B: Methodological, Elsevier, vol. 38(7), pages 613-633, August.
    4. Friedman, Jerome H. & Hastie, Trevor & Tibshirani, Rob, 2010. "Regularization Paths for Generalized Linear Models via Coordinate Descent," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 33(i01).
    5. Mi Diao & Yi Zhu & Joseph Ferreira Jr & Carlo Ratti, 2016. "Inferring individual daily activities from mobile phone traces: A Boston example," Environment and Planning B, , vol. 43(5), pages 920-940, September.
    6. Takahiko Kusakabe & Takamasa Iryo & Yasuo Asakura, 2010. "Estimation method for railway passengers’ train choice behavior with smart card transaction data," Transportation, Springer, vol. 37(5), pages 731-749, September.
    7. Deakin, Elizabeth & Kim, Songju, 2001. "Transportation Technologies: Implications for Planning," University of California Transportation Center, Working Papers qt0bg7n68t, University of California Transportation Center.
    8. Deakin, Elizabeth & Kim, Songju, 2001. "Transportation Technologies: Implications for Planning," University of California Transportation Center, Working Papers qt9gt0f9d2, University of California Transportation Center.
    9. Martin Herold & Joseph Scepan & Keith C Clarke, 2002. "The Use of Remote Sensing and Landscape Metrics to Describe Structures and Changes in Urban Land Uses," Environment and Planning A, , vol. 34(8), pages 1443-1458, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yi Zhu, 2022. "Inference of activity patterns from urban sensing data using conditional random fields," Environment and Planning B, , vol. 49(2), pages 549-565, February.
    2. Jin, Meihan & Wang, Menghan & Gong, Yongxi & Liu, Yu, 2022. "Spatio-temporally constrained origin–destination inferring using public transit fare card data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ikki Kim & Hyoung-Chul Kim & Dong-Jeong Seo & Jung In Kim, 2020. "Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network," Transportation, Springer, vol. 47(5), pages 2179-2202, October.
    2. Iga Solecka & Dietmar Bothmer & Arkadiusz Głogowski, 2019. "Recognizing Landscapes for the Purpose of Sustainable Development—Experiences from Poland," Sustainability, MDPI, vol. 11(12), pages 1-19, June.
    3. Wang, Yihong & Correia, Gonçalo Homem de Almeida & de Romph, Erik & Timmermans, H.J.P., 2017. "Using metro smart card data to model location choice of after-work activities: An application to Shanghai," Journal of Transport Geography, Elsevier, vol. 63(C), pages 40-47.
    4. Hiroaki Nishiuchi & Yasuyuki Kobayashi & Tomoyuki Todoroki & Tomoya Kawasaki, 2018. "Impact analysis of reductions in tram services in rural areas in Japan using smart card data," Public Transport, Springer, vol. 10(2), pages 291-309, August.
    5. De Zhao & Wei Wang & Amber Woodburn & Megan S. Ryerson, 2017. "Isolating high-priority metro and feeder bus transfers using smart card data," Transportation, Springer, vol. 44(6), pages 1535-1554, November.
    6. Sung-Pil Hong & Yun-Hong Min & Myoung-Ju Park & Kyung Min Kim & Suk Mun Oh, 2016. "Precise estimation of connections of metro passengers from Smart Card data," Transportation, Springer, vol. 43(5), pages 749-769, September.
    7. Nicholas Fournier & Eleni Christofa & Arun Prakash Akkinepally & Carlos Lima Azevedo, 2021. "Integrated population synthesis and workplace assignment using an efficient optimization-based person-household matching method," Transportation, Springer, vol. 48(2), pages 1061-1087, April.
    8. Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
    9. Zhou, Jiangping & Sipe, Neil & Ma, Zhenliang & Mateo-Babiano, Derlie & Darchen, Sébastien, 2019. "Monitoring transit-served areas with smartcard data: A Brisbane case study," Journal of Transport Geography, Elsevier, vol. 76(C), pages 265-275.
    10. Zhang, Shanqi & Yang, Yu & Zhen, Feng & Lobsang, Tashi & Li, Zhixuan, 2021. "Understanding the travel behaviors and activity patterns of the vulnerable population using smart card data: An activity space-based approach," Journal of Transport Geography, Elsevier, vol. 90(C).
    11. Ying Song & Yingling Fan & Xin Li & Yanjie Ji, 2018. "Multidimensional visualization of transit smartcard data using space–time plots and data cubes," Transportation, Springer, vol. 45(2), pages 311-333, March.
    12. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.
    13. Liu, Jiangtao & Zhou, Xuesong, 2019. "Observability quantification of public transportation systems with heterogeneous data sources: An information-space projection approach based on discretized space-time network flow models," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 302-323.
    14. Tutz, Gerhard & Pößnecker, Wolfgang & Uhlmann, Lorenz, 2015. "Variable selection in general multinomial logit models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 207-222.
    15. Ernesto Carrella & Richard M. Bailey & Jens Koed Madsen, 2018. "Indirect inference through prediction," Papers 1807.01579, arXiv.org.
    16. Rui Wang & Naihua Xiu & Kim-Chuan Toh, 2021. "Subspace quadratic regularization method for group sparse multinomial logistic regression," Computational Optimization and Applications, Springer, vol. 79(3), pages 531-559, July.
    17. Mkhadri, Abdallah & Ouhourane, Mohamed, 2013. "An extended variable inclusion and shrinkage algorithm for correlated variables," Computational Statistics & Data Analysis, Elsevier, vol. 57(1), pages 631-644.
    18. Masakazu Higuchi & Mitsuteru Nakamura & Shuji Shinohara & Yasuhiro Omiya & Takeshi Takano & Daisuke Mizuguchi & Noriaki Sonota & Hiroyuki Toda & Taku Saito & Mirai So & Eiji Takayama & Hiroo Terashi &, 2022. "Detection of Major Depressive Disorder Based on a Combination of Voice Features: An Exploratory Approach," IJERPH, MDPI, vol. 19(18), pages 1-13, September.
    19. Susan Athey & Guido W. Imbens & Stefan Wager, 2018. "Approximate residual balancing: debiased inference of average treatment effects in high dimensions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 80(4), pages 597-623, September.
    20. Vincent, Martin & Hansen, Niels Richard, 2014. "Sparse group lasso and high dimensional multinomial classification," Computational Statistics & Data Analysis, Elsevier, vol. 71(C), pages 771-786.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:6:d:10.1007_s11116-018-9881-8. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.