IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v47y2020i4d10.1007_s11116-019-10028-4.html
   My bibliography  Save this article

Potential last-mile impacts of crowdshipping services: a simulation-based evaluation

Author

Listed:
  • Michele D. Simoni

    (University of Texas at Austin
    Center for Transportation and Logistics, Massachusetts Institute of Technology)

  • Edoardo Marcucci

    (University of Roma Tre)

  • Valerio Gatta

    (University of Roma Tre)

  • Christian G. Claudel

    (University of Texas at Austin)

Abstract

Crowdsourced delivery services (crowdshipping) represent a shipping alternative to traditional delivery systems, particularly suitable for e-commerce. Although some benefits in terms of reduced pollution and congestion could be obtained by replacing dedicated freight trips, the impacts of crowdshipping are unclear and depend on several factors such as the transport mode used, the match between supply and demand, length of detours, and possible induced demand. For example, private drivers could modify their existing routes or engage in new trips to pick up and drop off packages; similarly, public transport users could carry along packages on their trips and drop them off at lockers installed around the stations. In this paper, we analyze by means of a simulation-based approach the potential impacts of alternative implementation frameworks. In order to account more realistically for last-mile delivery operations, a hybrid dynamic traffic simulation is adopted such that the macroscopic features of traffic (triggering of congestion, queue spillbacks and interactions with traffic signals) are reproduced in combination with the microscopic features of delivery operations (delivery vehicles are tracked along their routes). The effects on traffic and emissions are investigated for the adoption of crowdshipping by carriers delivering parcels in the city center of Rome, Italy. Results show that not only is the mode employed by crowdshippers crucial for the sustainability of such a measure, but also operational aspects involving the length of detour, parking behavior, and daily traffic variations. Crowdsourced deliveries by car have generally higher negative impacts than corresponding deliveries by public transit. However, limiting the deviations of crowdshippers from the original trips, providing adequate parking options, and incentivizing off-peak deliveries, could significantly reduce crowdshipping externalities.

Suggested Citation

  • Michele D. Simoni & Edoardo Marcucci & Valerio Gatta & Christian G. Claudel, 2020. "Potential last-mile impacts of crowdshipping services: a simulation-based evaluation," Transportation, Springer, vol. 47(4), pages 1933-1954, August.
  • Handle: RePEc:kap:transp:v:47:y:2020:i:4:d:10.1007_s11116-019-10028-4
    DOI: 10.1007/s11116-019-10028-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-019-10028-4
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-019-10028-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Baindur, Deepak & Macário, Rosário M., 2013. "Mumbai lunch box delivery system: A transferable benchmark in urban logistics?," Research in Transportation Economics, Elsevier, vol. 38(1), pages 110-121.
    2. Giacomo Lozzi & Valerio Gatta & Edoardo Marcucci, 2018. "European urban freight transport policies and research funding: are priorities and H2020 calls aligned?," REGION, European Regional Science Association, vol. 5, pages 53-71.
    3. Wei Qi & Lefei Li & Sheng Liu & Zuo-Jun Max Shen, 2018. "Shared Mobility for Last-Mile Delivery: Design, Operational Prescriptions, and Environmental Impact," Manufacturing & Service Operations Management, INFORMS, vol. 20(4), pages 737-751, October.
    4. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    5. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    6. Punel, Aymeric & Stathopoulos, Amanda, 2017. "Modeling the acceptability of crowdsourced goods deliveries: Role of context and experience effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 105(C), pages 18-38.
    7. Papageorgiou, Markos, 1998. "Some remarks on macroscopic traffic flow modelling," Transportation Research Part A: Policy and Practice, Elsevier, vol. 32(5), pages 323-329, September.
    8. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    9. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    10. G. Dantzig & R. Fulkerson & S. Johnson, 1954. "Solution of a Large-Scale Traveling-Salesman Problem," Operations Research, INFORMS, vol. 2(4), pages 393-410, November.
    11. Marcucci, Edoardo & Gatta, Valerio, 2017. "Investigating the potential for off-hour deliveries in the city of Rome: Retailers’ perceptions and stated reactions," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 142-156.
    12. Archetti, Claudia & Savelsbergh, Martin & Speranza, M. Grazia, 2016. "The Vehicle Routing Problem with Occasional Drivers," European Journal of Operational Research, Elsevier, vol. 254(2), pages 472-480.
    13. Amer, Ahmed & Chow, Joseph Y.J., 2017. "A downtown on-street parking model with urban truck delivery behavior," Transportation Research Part A: Policy and Practice, Elsevier, vol. 102(C), pages 51-67.
    14. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    15. Kafle, Nabin & Zou, Bo & Lin, Jane, 2017. "Design and modeling of a crowdsource-enabled system for urban parcel relay and delivery," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 62-82.
    16. Wang, Yuan & Zhang, Dongxiang & Liu, Qing & Shen, Fumin & Lee, Loo Hay, 2016. "Towards enhancing the last-mile delivery: An effective crowd-tasking model with scalable solutions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 93(C), pages 279-293.
    17. Marcucci, Edoardo & Le Pira, Michela & Gatta, Valerio & Inturri, Giuseppe & Ignaccolo, Matteo & Pluchino, Alessandro, 2017. "Simulating participatory urban freight transport policy-making: Accounting for heterogeneous stakeholders’ preferences and interaction effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 103(C), pages 69-86.
    18. M. W. P. Savelsbergh & M. Sol, 1995. "The General Pickup and Delivery Problem," Transportation Science, INFORMS, vol. 29(1), pages 17-29, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gleb V. Savin, 2021. "The smart city transport and logistics system: Theory, methodology and practice," Upravlenets, Ural State University of Economics, vol. 12(6), pages 67-86, October.
    2. Veronika Harantová & Ambróz Hájnik & Alica Kalašová & Tomasz Figlus, 2022. "The Effect of the COVID-19 Pandemic on Traffic Flow Characteristics, Emissions Production and Fuel Consumption at a Selected Intersection in Slovakia," Energies, MDPI, vol. 15(6), pages 1-21, March.
    3. Reed, Sara & Campbell, Ann Melissa & Thomas, Barrett W., 2024. "Does parking matter? The impact of parking time on last-mile delivery optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).
    4. Akbar, Usman & Jain, Avi Anand & Bråthen, Svein, 2024. "Sustainability assessment of inter-urban crowdshipping - A case study approach," Research in Transportation Economics, Elsevier, vol. 103(C).
    5. Boshuai Zhao & Kai Wang & Wenchao Wei & Roel Leus, 2024. "The Dial-a-Ride Problem with Limited Pickups per Trip," Papers 2408.07602, arXiv.org, revised Aug 2024.
    6. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    7. Marisdea Castiglione & Antonio Comi & Rosita De Vincentis & Andreea Dumitru & Marialisa Nigro, 2022. "Delivering in Urban Areas: A Probabilistic-Behavioral Approach for Forecasting the Use of Electric Micromobility," Sustainability, MDPI, vol. 14(15), pages 1-13, July.
    8. Tapia, Rodrigo J. & Kourounioti, Ioanna & Thoen, Sebastian & de Bok, Michiel & Tavasszy, Lori, 2023. "A disaggregate model of passenger-freight matching in crowdshipping services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 169(C).
    9. Giacomo Lozzi & Gabriele Iannaccone & Ila Maltese & Valerio Gatta & Edoardo Marcucci & Riccardo Lozzi, 2022. "On-Demand Logistics: Solutions, Barriers, and Enablers," Sustainability, MDPI, vol. 14(15), pages 1-21, August.
    10. Raúl Martín-Santamaría & Ana D. López-Sánchez & María Luisa Delgado-Jalón & J. Manuel Colmenar, 2021. "An Efficient Algorithm for Crowd Logistics Optimization," Mathematics, MDPI, vol. 9(5), pages 1-19, March.
    11. Xiao, Haohan & Xu, Min & Wang, Shuaian, 2023. "A game-theoretic model for crowd-shipping operations with profit improvement strategies," International Journal of Production Economics, Elsevier, vol. 262(C).
    12. Ghaderi, Hadi & Zhang, Lele & Tsai, Pei-Wei & Woo, Jihoon, 2022. "Crowdsourced last-mile delivery with parcel lockers," International Journal of Production Economics, Elsevier, vol. 251(C).
    13. Jose Alejandro Cano & Abraham Londoño-Pineda & Carolina Rodas, 2022. "Sustainable Logistics for E-Commerce: A Literature Review and Bibliometric Analysis," Sustainability, MDPI, vol. 14(19), pages 1-24, September.
    14. Iznoorhakmal bin Ibrahim & Siti Ayu Jalil & Siti Salwa Salleh, 2023. "A Conceptual Model for Sustainable Green Port Practices: A Case Study of Northport (Malaysia) Berhad," Information Management and Business Review, AMH International, vol. 15(3), pages 267-279.
    15. Ranjbari, Andisheh & Diehl, Caleb & Dalla Chiara, Giacomo & Goodchild, Anne, 2023. "Do parcel lockers reduce delivery times? Evidence from the field," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    16. Patricija Bajec & Danijela Tuljak-Suban, 2022. "A Strategic Approach for Promoting Sustainable Crowdshipping in Last-Mile Deliveries," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    17. Beckers, Joris & Cardenas, Ivan & Sanchez-Diaz, Ivan, 2022. "Managing household freight: The impact of online shopping on residential freight trips," Transport Policy, Elsevier, vol. 125(C), pages 299-311.
    18. Mohri, Seyed Sina & Nassir, Neema & Thompson, Russell G. & Lavieri, Patricia Sauri, 2024. "Public transportation-based crowd-shipping initiatives: Are users willing to participate? Why not?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    19. Sergio Maria Patella & Gianluca Grazieschi & Valerio Gatta & Edoardo Marcucci & Stefano Carrese, 2020. "The Adoption of Green Vehicles in Last Mile Logistics: A Systematic Review," Sustainability, MDPI, vol. 13(1), pages 1-29, December.
    20. Garola, Giovanni & Seghezzi, Arianna & Siragusa, Chiara & Mangiaracina, Riccardo, 2022. "Sustainability in urban logistics: A literature review," Chapters from the Proceedings of the Hamburg International Conference of Logistics (HICL), in: Kersten, Wolfgang & Jahn, Carlos & Blecker, Thorsten & Ringle, Christian M. (ed.), Changing Tides: The New Role of Resilience and Sustainability in Logistics and Supply Chain Management – Innovative Approaches for the Shift to a New , volume 33, pages 709-730, Hamburg University of Technology (TUHH), Institute of Business Logistics and General Management.
    21. Mancini, Simona & Gansterer, Margaretha, 2022. "Bundle generation for last-mile delivery with occasional drivers," Omega, Elsevier, vol. 108(C).
    22. Sören Lauenstein & Christoph Schank, 2022. "Design of a Sustainable Last Mile in Urban Logistics—A Systematic Literature Review," Sustainability, MDPI, vol. 14(9), pages 1-14, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pourrahmani, Elham & Jaller, Miguel, 2021. "Crowdshipping in last mile deliveries: Operational challenges and research opportunities," Socio-Economic Planning Sciences, Elsevier, vol. 78(C).
    2. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    3. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2021. "A multi-period analysis of the integrated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 292(2), pages 483-499.
    4. Behrend, Moritz & Meisel, Frank & Fagerholt, Kjetil & Andersson, Henrik, 2019. "An exact solution method for the capacitated item-sharing and crowdshipping problem," European Journal of Operational Research, Elsevier, vol. 279(2), pages 589-604.
    5. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    6. Valerio Gatta & Edoardo Marcucci & Marialisa Nigro & Sergio Maria Patella & Simone Serafini, 2018. "Public Transport-Based Crowdshipping for Sustainable City Logistics: Assessing Economic and Environmental Impacts," Sustainability, MDPI, vol. 11(1), pages 1-14, December.
    7. Huanping Li & Jian Wang & Guopeng Bai & Xiaowei Hu, 2021. "Exploring the Distribution of Traffic Flow for Shared Human and Autonomous Vehicle Roads," Energies, MDPI, vol. 14(12), pages 1-21, June.
    8. Ermagun, Alireza & Stathopoulos, Amanda, 2018. "To bid or not to bid: An empirical study of the supply determinants of crowd-shipping," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 468-483.
    9. Pedro Cesar Lopes Gerum & Andrew Reed Benton & Melike Baykal-Gürsoy, 2019. "Traffic density on corridors subject to incidents: models for long-term congestion management," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 8(5), pages 795-831, December.
    10. Yan, Qinglong & Sun, Zhe & Gan, Qijian & Jin, Wen-Long, 2018. "Automatic identification of near-stationary traffic states based on the PELT changepoint detection," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 39-54.
    11. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    12. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    13. Yin, Ruyang & Zheng, Nan & Liu, Zhiyuan, 2022. "Estimating fundamental diagram for multi-modal signalized urban links with limited probe data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 606(C).
    14. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    15. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
    16. Hao, Peng & Ban, Xuegang, 2015. "Long queue estimation for signalized intersections using mobile data," Transportation Research Part B: Methodological, Elsevier, vol. 82(C), pages 54-73.
    17. Lu, Chung-Cheng & Liu, Jiangtao & Qu, Yunchao & Peeta, Srinivas & Rouphail, Nagui M. & Zhou, Xuesong, 2016. "Eco-system optimal time-dependent flow assignment in a congested network," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 217-239.
    18. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    19. Blandin, Sébastien & Argote, Juan & Bayen, Alexandre M. & Work, Daniel B., 2013. "Phase transition model of non-stationary traffic flow: Definition, properties and solution method," Transportation Research Part B: Methodological, Elsevier, vol. 52(C), pages 31-55.
    20. Li, Jia & Zhang, H. Michael, 2015. "Bounding tandem queuing system performance with variational theory," Transportation Research Part B: Methodological, Elsevier, vol. 81(P3), pages 848-862.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:47:y:2020:i:4:d:10.1007_s11116-019-10028-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.