IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v132y2020icp303-319.html
   My bibliography  Save this article

Static traffic assignment with residual queues and spillback

Author

Listed:
  • Bliemer, Michiel C.J.
  • Raadsen, Mark P.H.

Abstract

In this paper we propose a novel static traffic assignment model where the network loading component accounts for non-stationary residual queues as well as spillback effects by explicitly adding capacity and storage constraints. This is achieved by deriving a static version of the dynamic general link transmission model that describes average link inflow and outflow rates during a given time period under simplified temporal assumptions. The resulting model adopts the same concave fundamental diagram and first order node model used in state-of-the-art macroscopic dynamic network loading without the need to explicitly describe time. We show that our mathematical problem formulation is an extension of several other models described in the literature, including the traditional capacity restrained static modelling paradigm. The equilibrium problem is formulated as a variational inequality problem while the network loading problem can be formulated as a fixed point problem. We prove that a solution exists to each problem as long as all traffic is loaded onto the network (i.e., no queue spillback into an origin). The model is illustrated via numerical examples on several hypothetical transport networks.

Suggested Citation

  • Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2020. "Static traffic assignment with residual queues and spillback," Transportation Research Part B: Methodological, Elsevier, vol. 132(C), pages 303-319.
  • Handle: RePEc:eee:transb:v:132:y:2020:i:c:p:303-319
    DOI: 10.1016/j.trb.2019.02.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261518311263
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2019.02.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fisk, Caroline, 1980. "Some developments in equilibrium traffic assignment," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 243-255, September.
    2. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part III: Multi-destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 305-313, August.
    3. Flötteröd, Gunnar & Rohde, Jannis, 2011. "Operational macroscopic modeling of complex urban road intersections," Transportation Research Part B: Methodological, Elsevier, vol. 45(6), pages 903-922, July.
    4. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part II: Queueing at freeway bottlenecks," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 289-303, August.
    5. Tampère, Chris M.J. & Corthout, Ruben & Cattrysse, Dirk & Immers, Lambertus H., 2011. "A generic class of first order node models for dynamic macroscopic simulation of traffic flows," Transportation Research Part B: Methodological, Elsevier, vol. 45(1), pages 289-309, January.
    6. Smits, Erik-Sander & Bliemer, Michiel C.J. & Pel, Adam J. & van Arem, Bart, 2015. "A family of macroscopic node models," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 20-39.
    7. Smulders, Stef, 1990. "Control of freeway traffic flow by variable speed signs," Transportation Research Part B: Methodological, Elsevier, vol. 24(2), pages 111-132, April.
    8. A. de Palma & Y. Nesterov, 2001. "Stationary Dynamic Solutions in Congested Transportation Networks: Summary and Perspectives," THEMA Working Papers 2001-19, THEMA (THéorie Economique, Modélisation et Applications), Université de Cergy-Pontoise.
    9. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    10. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    11. Yang, Hai & Yagar, Sam, 1994. "Traffic assignment and traffic control in general freeway-arterial corridor systems," Transportation Research Part B: Methodological, Elsevier, vol. 28(6), pages 463-486, December.
    12. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    13. Corthout, Ruben & Flötteröd, Gunnar & Viti, Francesco & Tampère, Chris M.J., 2012. "Non-unique flows in macroscopic first-order intersection models," Transportation Research Part B: Methodological, Elsevier, vol. 46(3), pages 343-359.
    14. Michiel C. J. Bliemer & Mark P. H. Raadsen & Luuk J. N. Brederode & Michael G. H. Bell & Luc J. J. Wismans & Mike J. Smith, 2017. "Genetics of traffic assignment models for strategic transport planning," Transport Reviews, Taylor & Francis Journals, vol. 37(1), pages 56-78, January.
    15. Paul I. Richards, 1956. "Shock Waves on the Highway," Operations Research, INFORMS, vol. 4(1), pages 42-51, February.
    16. Han, Ke & Piccoli, Benedetto & Friesz, Terry L., 2016. "Continuity of the path delay operator for dynamic network loading with spillback," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 211-233.
    17. Stella Dafermos, 1980. "Traffic Equilibrium and Variational Inequalities," Transportation Science, INFORMS, vol. 14(1), pages 42-54, February.
    18. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Steady-state link travel time methods: Formulation, derivation, classification, and unification," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 167-191.
    19. Newell, G. F., 1993. "A simplified theory of kinematic waves in highway traffic, part I: General theory," Transportation Research Part B: Methodological, Elsevier, vol. 27(4), pages 281-287, August.
    20. Larsson, Torbjörn & Patriksson, Michael, 1995. "An augmented lagrangean dual algorithm for link capacity side constrained traffic assignment problems," Transportation Research Part B: Methodological, Elsevier, vol. 29(6), pages 433-455, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Brederode, Luuk & Pel, Adam & Wismans, Luc & Rijksen, Bernike & Hoogendoorn, Serge, 2023. "Travel demand matrix estimation for strategic road traffic assignment models with strict capacity constraints and residual queues," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 1-31.
    2. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2023. "General solution scheme for the static link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 108-135.
    2. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Continuous-time general link transmission model with simplified fanning, Part II: Event-based algorithm for networks," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 471-501.
    3. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    4. Himpe, Willem & Corthout, Ruben & Tampère, M.J. Chris, 2016. "An efficient iterative link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 170-190.
    5. Flötteröd, G. & Osorio, C., 2017. "Stochastic network link transmission model," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 180-209.
    6. Bliemer, Michiel C.J. & Raadsen, Mark P.H. & Smits, Erik-Sander & Zhou, Bojian & Bell, Michael G.H., 2014. "Quasi-dynamic traffic assignment with residual point queues incorporating a first order node model," Transportation Research Part B: Methodological, Elsevier, vol. 68(C), pages 363-384.
    7. Bliemer, Michiel C.J. & Raadsen, Mark P.H., 2019. "Continuous-time general link transmission model with simplified fanning, Part I: Theory and link model formulation," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 442-470.
    8. Ngoduy, D. & Hoang, N.H. & Vu, H.L. & Watling, D., 2016. "Optimal queue placement in dynamic system optimum solutions for single origin-destination traffic networks," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 148-169.
    9. Smits, Erik-Sander & Bliemer, Michiel C.J. & Pel, Adam J. & van Arem, Bart, 2015. "A family of macroscopic node models," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 20-39.
    10. Brederode, Luuk & Pel, Adam & Wismans, Luc & Rijksen, Bernike & Hoogendoorn, Serge, 2023. "Travel demand matrix estimation for strategic road traffic assignment models with strict capacity constraints and residual queues," Transportation Research Part B: Methodological, Elsevier, vol. 167(C), pages 1-31.
    11. Jabari, Saif Eddin, 2016. "Node modeling for congested urban road networks," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 229-249.
    12. Raadsen, Mark P.H. & Bliemer, Michiel C.J., 2019. "Steady-state link travel time methods: Formulation, derivation, classification, and unification," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 167-191.
    13. Raadsen, Mark P.H. & Bliemer, Michiel C.J. & Bell, Michael G.H., 2016. "An efficient and exact event-based algorithm for solving simplified first order dynamic network loading problems in continuous time," Transportation Research Part B: Methodological, Elsevier, vol. 92(PB), pages 191-210.
    14. Storm, Pieter Jacob & Mandjes, Michel & van Arem, Bart, 2022. "Efficient evaluation of stochastic traffic flow models using Gaussian process approximation," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 126-144.
    15. Zhang, Fang & Lu, Jian & Hu, Xiaojian & Meng, Qiang, 2023. "A stochastic dynamic network loading model for mixed traffic with autonomous and human-driven vehicles," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    16. Jiang, Chenming & Bhat, Chandra R. & Lam, William H.K., 2020. "A bibliometric overview of Transportation Research Part B: Methodological in the past forty years (1979–2019)," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 268-291.
    17. van der Gun, Jeroen P.T. & Pel, Adam J. & van Arem, Bart, 2017. "Extending the Link Transmission Model with non-triangular fundamental diagrams and capacity drops," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 154-178.
    18. Jin, Wen-Long, 2017. "A Riemann solver for a system of hyperbolic conservation laws at a general road junction," Transportation Research Part B: Methodological, Elsevier, vol. 98(C), pages 21-41.
    19. Carolina Osorio & Gunnar Flötteröd, 2015. "Capturing Dependency Among Link Boundaries in a Stochastic Dynamic Network Loading Model," Transportation Science, INFORMS, vol. 49(2), pages 420-431, May.
    20. Ke Han & Gabriel Eve & Terry L. Friesz, 2019. "Computing Dynamic User Equilibria on Large-Scale Networks with Software Implementation," Networks and Spatial Economics, Springer, vol. 19(3), pages 869-902, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:132:y:2020:i:c:p:303-319. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.