IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v11y2023i20p4296-d1260129.html
   My bibliography  Save this article

Data Assimilation for Agent-Based Models

Author

Listed:
  • Amir Ghorbani

    (Department of Infrastructure Engineering, University of Melbourne, Parkville, VIC 3010, Australia)

  • Vahid Ghorbani

    (Integrated Engineering, Department of Environmental Science and Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin-si 17104, Gyeonggi-do, Republic of Korea)

  • Morteza Nazari-Heris

    (College of Engineering, Lawrence Technological University, Southfield, MI 48075, USA)

  • Somayeh Asadi

    (Department of Architectural Engineering, Pennsylvania State University, University Park, State College, PA 16802, USA)

Abstract

This article presents a comprehensive review of the existing literature on the topic of data assimilation for agent-based models, with a specific emphasis on pedestrians and passengers within the context of transportation systems. This work highlights a plethora of advanced techniques that may have not been previously employed for online pedestrian simulation, and may therefore offer significant value to readers in this domain. Notably, these methods often necessitate a sophisticated understanding of mathematical principles such as linear algebra, probability theory, singular value decomposition, optimization, machine learning, and compressed sensing. Despite this complexity, this article strives to provide a nuanced explanation of these mathematical underpinnings. It is important to acknowledge that the subject matter under study is still in its nascent stages, and as such, it is highly probable that new techniques will emerge in the coming years. One potential avenue for future exploration involves the integration of machine learning with Agent-based Data Assimilation (ABDA, i.e., data assimilation methods used for agent-based models) methods.

Suggested Citation

  • Amir Ghorbani & Vahid Ghorbani & Morteza Nazari-Heris & Somayeh Asadi, 2023. "Data Assimilation for Agent-Based Models," Mathematics, MDPI, vol. 11(20), pages 1-25, October.
  • Handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4296-:d:1260129
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/11/20/4296/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/11/20/4296/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
    2. Neema Nassir & Mark Hickman & Zhen-Liang Ma, 2015. "Activity detection and transfer identification for public transit fare card data," Transportation, Springer, vol. 42(4), pages 683-705, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chen, Enhui & Stathopoulos, Amanda & Nie, Yu (Marco), 2022. "Transfer station choice in a multimodal transit system: An empirical study," Transportation Research Part A: Policy and Practice, Elsevier, vol. 165(C), pages 337-355.
    2. Ahmad Tavassoli & Mahmoud Mesbah & Mark Hickman, 2018. "Application of smart card data in validating a large-scale multi-modal transit assignment model," Public Transport, Springer, vol. 10(1), pages 1-21, May.
    3. Yao, Rui & Bekhor, Shlomo, 2022. "A variational autoencoder approach for choice set generation and implicit perception of alternatives in choice modeling," Transportation Research Part B: Methodological, Elsevier, vol. 158(C), pages 273-294.
    4. Masood Jafari Kang & Shervin Ataeian & S. M. Mahdi Amiripour, 2021. "A procedure for public transit OD matrix generation using smart card transaction data," Public Transport, Springer, vol. 13(1), pages 81-100, March.
    5. Cortés, Cristián E. & Donoso, Pedro & Gutiérrez, Leonel & Herl, Daniel & Muñoz, Diego, 2023. "A recursive stochastic transit equilibrium model estimated using passive data from Santiago, Chile," Transportation Research Part B: Methodological, Elsevier, vol. 174(C).
    6. Mai, Tien & Yu, Xinlian & Gao, Song & Frejinger, Emma, 2021. "Routing policy choice prediction in a stochastic network: Recursive model and solution algorithm," Transportation Research Part B: Methodological, Elsevier, vol. 151(C), pages 42-58.
    7. Nassir, Neema & Hickman, Mark & Malekzadeh, Ali & Irannezhad, Elnaz, 2016. "A utility-based travel impedance measure for public transit network accessibility," Transportation Research Part A: Policy and Practice, Elsevier, vol. 88(C), pages 26-39.
    8. Nassir, Neema & Hickman, Mark & Ma, Zhen-Liang, 2019. "A strategy-based recursive path choice model for public transit smart card data," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 528-548.
    9. Zhao, Shuangming & Zhao, Pengxiang & Cui, Yunfan, 2017. "A network centrality measure framework for analyzing urban traffic flow: A case study of Wuhan, China," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 478(C), pages 143-157.
    10. Ahmad Tavassoli & Mahmoud Mesbah & Mark Hickman, 2020. "Calibrating a transit assignment model using smart card data in a large-scale multi-modal transit network," Transportation, Springer, vol. 47(5), pages 2133-2156, October.
    11. Egu, Oscar & Bonnel, Patrick, 2020. "How comparable are origin-destination matrices estimated from automatic fare collection, origin-destination surveys and household travel survey? An empirical investigation in Lyon," Transportation Research Part A: Policy and Practice, Elsevier, vol. 138(C), pages 267-282.
    12. Amaya, Margarita & Cruzat, Ramón & Munizaga, Marcela A., 2018. "Estimating the residence zone of frequent public transport users to make travel pattern and time use analysis," Journal of Transport Geography, Elsevier, vol. 66(C), pages 330-339.
    13. Nielsen, Otto Anker & Eltved, Morten & Anderson, Marie Karen & Prato, Carlo Giacomo, 2021. "Relevance of detailed transfer attributes in large-scale multimodal route choice models for metropolitan public transport passengers," Transportation Research Part A: Policy and Practice, Elsevier, vol. 147(C), pages 76-92.
    14. Zhou, Jiangping & Sipe, Neil & Ma, Zhenliang & Mateo-Babiano, Derlie & Darchen, Sébastien, 2019. "Monitoring transit-served areas with smartcard data: A Brisbane case study," Journal of Transport Geography, Elsevier, vol. 76(C), pages 265-275.
    15. Yi Zhu, 2020. "Estimating the activity types of transit travelers using smart card transaction data: a case study of Singapore," Transportation, Springer, vol. 47(6), pages 2703-2730, December.
    16. Mepparambath, Rakhi Manohar & Soh, Yong Sheng & Jayaraman, Vasundhara & Tan, Hong En & Ramli, Muhamad Azfar, 2023. "A novel modelling approach of integrated taxi and transit mode and route choice using city-scale emerging mobility data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 170(C).
    17. Ikki Kim & Hyoung-Chul Kim & Dong-Jeong Seo & Jung In Kim, 2020. "Calibration of a transit route choice model using revealed population data of smartcard in a multimodal transit network," Transportation, Springer, vol. 47(5), pages 2179-2202, October.
    18. Jiangyue Wu & Jiangping Zhou & Hanxi Ma, 2022. "Revisiting the valuable locales in our cities? Visualizing social interaction potential around metro station areas in Wuhan, China," Environment and Planning A, , vol. 54(3), pages 433-436, May.
    19. Zhou, Jiangping & Murphy, Enda, 2019. "Day-to-day variation in excess commuting: An exploratory study of Brisbane, Australia," Journal of Transport Geography, Elsevier, vol. 74(C), pages 223-232.
    20. Sun, Lijun & Axhausen, Kay W., 2016. "Understanding urban mobility patterns with a probabilistic tensor factorization framework," Transportation Research Part B: Methodological, Elsevier, vol. 91(C), pages 511-524.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:11:y:2023:i:20:p:4296-:d:1260129. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.