IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v48y2021i6d10.1007_s11116-021-10164-w.html
   My bibliography  Save this article

Derivation of train arrival timings through correlations from individual passenger farecard data

Author

Listed:
  • Hong En Tan

    (A*STAR)

  • De Wen Soh

    (A*STAR)

  • Yong Sheng Soh

    (A*STAR)

  • Muhamad Azfar Ramli

    (A*STAR)

Abstract

In this paper, we propose a method for estimating the timings at which trains arrive and depart from stations using passenger farecard data and knowledge of the network topology. The problem we consider is essential for understanding commuter movement patterns across metro systems at high granular detail in settings where one does not have access to train logs (comprising records of train arrival and departure timings) or when these records are unreliable. Our technique requires as input the timings at which passengers arrive and depart from station—these are easily retrievable from farecard data—and provide as output an estimate of the number of trains running as well as the timings at which each train arrives and departs at each station. Our method relies on two key observations: (1) passengers tend to exit metro stations as soon as they alight and (2) we can reliably conclude that groups of passengers who board at the same stop but alight at different stops were on the same train if their boarding timings have similar distributions. In contrast with prior works, our methodology is stand-alone in that it does not rely on external sources of information such as train schedules and it requires minimal parameter tuning. In addition, because a by-product of our method is that we infer the trains for which passengers board, our techniques can be employed as a pre-processing step for downstream tasks such as inferring passenger route choices. We apply our method to recover train logs using synthetically generated data as well as actual ticketing data of passengers in the Singapore metro network. Experiments on synthetic data show that our method reliably recovers train logs even with moderate levels of overcrowding on train platforms.

Suggested Citation

  • Hong En Tan & De Wen Soh & Yong Sheng Soh & Muhamad Azfar Ramli, 2021. "Derivation of train arrival timings through correlations from individual passenger farecard data," Transportation, Springer, vol. 48(6), pages 3181-3205, December.
  • Handle: RePEc:kap:transp:v:48:y:2021:i:6:d:10.1007_s11116-021-10164-w
    DOI: 10.1007/s11116-021-10164-w
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11116-021-10164-w
    File Function: Abstract
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-021-10164-w?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Einmahl, John H. J. & Magnus, Jan R., 2008. "Records in Athletics Through Extreme-Value Theory," Journal of the American Statistical Association, American Statistical Association, vol. 103(484), pages 1382-1391.
    2. Lee, Minseo & Sohn, Keemin, 2015. "Inferring the route-use patterns of metro passengers based only on travel-time data within a Bayesian framework using a reversible-jump Markov chain Monte Carlo (MCMC) simulation," Transportation Research Part B: Methodological, Elsevier, vol. 81(P1), pages 1-17.
    3. Sung-Pil Hong & Yun-Hong Min & Myoung-Ju Park & Kyung Min Kim & Suk Mun Oh, 2016. "Precise estimation of connections of metro passengers from Smart Card data," Transportation, Springer, vol. 43(5), pages 749-769, September.
    4. Ed Manley & Chen Zhong & Michael Batty, 2018. "Spatiotemporal variation in travel regularity through transit user profiling," Transportation, Springer, vol. 45(3), pages 703-732, May.
    5. Lin, Jie & Wang, Peng & Barnum, Darold T., 2008. "A quality control framework for bus schedule reliability," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 44(6), pages 1086-1098, November.
    6. Hörcher, Daniel & Graham, Daniel J. & Anderson, Richard J., 2017. "Crowding cost estimation with large scale smart card and vehicle location data," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 105-125.
    7. Ramli, Muhamad Azfar & Jayaraman, Vasundhara & Kwek, Hyen Chee & Tan, Kian Heong & Lee Kee Khoon, Gary & Monterola, Christopher, 2018. "Improved estimation of commuter waiting times using headway and commuter boarding information," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 501(C), pages 217-226.
    8. Takahiko Kusakabe & Takamasa Iryo & Yasuo Asakura, 2010. "Estimation method for railway passengers’ train choice behavior with smart card transaction data," Transportation, Springer, vol. 37(5), pages 731-749, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taoyuan Yang & Peng Zhao & Xiangming Yao, 2020. "A Method to Estimate URT Passenger Spatial-Temporal Trajectory with Smart Card Data and Train Schedules," Sustainability, MDPI, vol. 12(6), pages 1-13, March.
    2. Wu, Jianjun & Qu, Yunchao & Sun, Huijun & Yin, Haodong & Yan, Xiaoyong & Zhao, Jiandong, 2019. "Data-driven model for passenger route choice in urban metro network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 787-798.
    3. Eun Hak Lee & Inmook Lee & Shin-Hyung Cho & Seung-Young Kho & Dong-Kyu Kim, 2019. "A Travel Behavior-Based Skip-Stop Strategy Considering Train Choice Behaviors Based on Smartcard Data," Sustainability, MDPI, vol. 11(10), pages 1-18, May.
    4. Yu, Chao & Li, Haiying & Xu, Xinyue & Liu, Jun, 2020. "Data-driven approach for solving the route choice problem with traveling backward behavior in congested metro systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    5. Zhu, Yiwen & Koutsopoulos, Haris N. & Wilson, Nigel H.M., 2017. "A probabilistic Passenger-to-Train Assignment Model based on automated data," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 522-542.
    6. Weiyan Mu & Xin Wang & Chunya Li & Shifeng Xiong, 2023. "Dynamic Modeling for Metro Passenger Flows on Congested Transfer Routes," Mathematics, MDPI, vol. 11(6), pages 1-20, March.
    7. Filip Covic & Stefan Voß, 2019. "Interoperable smart card data management in public mass transit," Public Transport, Springer, vol. 11(3), pages 523-548, October.
    8. Hänseler, Flurin S. & van den Heuvel, Jeroen P.A. & Cats, Oded & Daamen, Winnie & Hoogendoorn, Serge P., 2020. "A passenger-pedestrian model to assess platform and train usage from automated data," Transportation Research Part A: Policy and Practice, Elsevier, vol. 132(C), pages 948-968.
    9. Bouscasse, Hélène & de Lapparent, Matthieu, 2019. "Perceived comfort and values of travel time savings in the Rhône-Alpes Region," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 370-387.
    10. Eboli, Laura & Mazzulla, Gabriella, 2012. "Performance indicators for an objective measure of public transport service quality," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 51, pages 1-4.
    11. Zhang, Wei & (Ato) Xu, Wangtu, 2017. "Simulation-based robust optimization for the schedule of single-direction bus transit route: The design of experiment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 106(C), pages 203-230.
    12. Christian Martin Mützel & Joachim Scheiner, 2022. "Investigating spatio-temporal mobility patterns and changes in metro usage under the impact of COVID-19 using Taipei Metro smart card data," Public Transport, Springer, vol. 14(2), pages 343-366, June.
    13. Davis, Lucas W., 2021. "Estimating the price elasticity of demand for subways: Evidence from Mexico," Regional Science and Urban Economics, Elsevier, vol. 87(C).
    14. Wang, Bing Xing & Yu, Keming & Coolen, Frank P.A., 2015. "Interval estimation for proportional reversed hazard family based on lower record values," Statistics & Probability Letters, Elsevier, vol. 98(C), pages 115-122.
    15. Ray C. Fair & Edward H. Kaplan, 2017. "Estimating Aging Effects in Running Events," Cowles Foundation Discussion Papers 3000, Cowles Foundation for Research in Economics, Yale University.
    16. Yanshuo Sun & Jungang Shi & Paul M. Schonfeld, 2016. "Identifying passenger flow characteristics and evaluating travel time reliability by visualizing AFC data: a case study of Shanghai Metro," Public Transport, Springer, vol. 8(3), pages 341-363, December.
    17. Hörcher, Daniel & Graham, Daniel J., 2018. "Demand imbalances and multi-period public transport supply," Transportation Research Part B: Methodological, Elsevier, vol. 108(C), pages 106-126.
    18. Varghese, Varun & Moniruzzaman, Md. & Chikaraishi, Makoto, 2023. "Environmental sustainability or equity in welfare? Analysing passenger flows of a mass rapid transit system with heterogeneous demand," Research in Transportation Economics, Elsevier, vol. 97(C).
    19. Hörcher, Daniel & Graham, Daniel J., 2020. "MaaS economics: Should we fight car ownership with subscriptions to alternative modes?," Economics of Transportation, Elsevier, vol. 22(C).
    20. Hong, Sung-Pil & Kim, Kyung min & Byeon, Geunyeong & Min, Yun-Hong, 2017. "A method to directly derive taste heterogeneity of travellers’ route choice in public transport from observed routes," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 41-52.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:48:y:2021:i:6:d:10.1007_s11116-021-10164-w. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.