IDEAS home Printed from https://ideas.repec.org/a/kap/transp/v41y2014i1p173-192.html
   My bibliography  Save this article

Evaluating light rail sketch planning: actual versus predicted station boardings in Phoenix

Author

Listed:
  • Christopher Upchurch
  • Michael Kuby

Abstract

In recent years, transit planners are increasingly turning to simpler, faster, and more spatially detailed “sketch planning” or “direct demand” models for forecasting rail transit boardings. Planners use these models for preliminary review of corridors and analysis of station-area effects, instead of or prior to four-step regional travel demand models. This paper uses a sketch-planning model based on a multiple regression originally fitted to light-rail ridership data for 268 stations in nine U.S. cities, and applies it predictively to the Phoenix, Arizona light-rail starter line that opened in December, 2008. The independent variables in the regression model include station-specific trip generation and intermodal–access variables as well as system-wide variables measuring network structure, climate, and metropolitan-area factors. Here we compare the predictions we made before and after construction began to pre-construction Valley Metro Rail predictions and to the actual boardings data for the system’s first 6 months of operations. Depending on the assumed number of bus lines at each station, the predicted total weekday ridership ranged from 24,767 to 37,907 compared with the average of 33,698 for the first 6 months, while the correlation of predicted and observed station boardings ranged from r = 0.33 to 0.47. Sports venues, universities, end-of-line stations, and the number of bus lines serving each station appear to account for the major over- and under-predictions at the station level. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • Christopher Upchurch & Michael Kuby, 2014. "Evaluating light rail sketch planning: actual versus predicted station boardings in Phoenix," Transportation, Springer, vol. 41(1), pages 173-192, January.
  • Handle: RePEc:kap:transp:v:41:y:2014:i:1:p:173-192
    DOI: 10.1007/s11116-013-9499-9
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11116-013-9499-9
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11116-013-9499-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    2. Ryuichi Kitamura & Cynthia Chen & Ram Pendyala & Ravi Narayanan, 2000. "Micro-simulation of daily activity-travel patterns for travel demand forecasting," Transportation, Springer, vol. 27(1), pages 25-51, February.
    3. Taylor, Brian D. & Fink, Camille N.Y., 2003. "The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature," University of California Transportation Center, Working Papers qt3xk9j8m2, University of California Transportation Center.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John Zacharias & Qi Zhao, 2018. "Local environmental factors in walking distance at metro stations," Public Transport, Springer, vol. 10(1), pages 91-106, May.
    2. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    3. You-Jin Jung & Jeffrey M. Casello, 2020. "Assessment of the transit ridership prediction errors using AVL/APC data," Transportation, Springer, vol. 47(6), pages 2731-2755, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    2. Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
    3. Luis Enrique Ramos-Santiago & Jeffrey Brown, 2016. "A comparative assessment of the factors associated with station-level streetcar versus light rail transit ridership in the United States," Urban Studies, Urban Studies Journal Limited, vol. 53(5), pages 915-935, April.
    4. Guerra, Erick & Cervero, Robert & Tischler, Daniel, 2011. "The Half-Mile Circle: Does It Represent Transit Station Catchments?," University of California Transportation Center, Working Papers qt0d84c2f4, University of California Transportation Center.
    5. Ahmed Daqrouq & Ardeshir Anjomani, 2019. "Public Transit Ridership and Car-Oriented Cities: The Case of the Dallas Region," Economies, MDPI, vol. 7(3), pages 1-17, August.
    6. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    7. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    8. Samanta, Sutapa & Jha, Manoj K., 2011. "Modeling a rail transit alignment considering different objectives," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(1), pages 31-45, January.
    9. Rodier, Caroline & Shaheen, Susan A. & Blake, Tagan, 2010. "Smart Parking Pilot on the Coaster Commuter Rail Line in San Diego, California," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt06s723rw, Institute of Transportation Studies, UC Berkeley.
    10. Azad, Mojdeh & Abdelqader, Dua & Taboada, Luis M. & Cherry, Christopher R., 2021. "Walk-to-transit demand estimation methods applied at the parcel level to improve pedestrian infrastructure investment," Journal of Transport Geography, Elsevier, vol. 92(C).
    11. Duncan, Michael & Christensen, Robert K., 2013. "An analysis of park-and-ride provision at light rail stations across the US," Transport Policy, Elsevier, vol. 25(C), pages 148-157.
    12. Li, Zheng, 2018. "The impact of metro accessibility on residential property values: An empirical analysis," Research in Transportation Economics, Elsevier, vol. 70(C), pages 52-56.
    13. Yang, Zimo & Lian, Defu & Yuan, Nicholas Jing & Xie, Xing & Rui, Yong & Zhou, Tao, 2017. "Indigenization of urban mobility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 469(C), pages 232-243.
    14. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    15. Duncan, Michael, 2019. "Would the replacement of park-and-ride facilities with transit-oriented development reduce vehicle kilometers traveled in an auto-oriented US region?," Transport Policy, Elsevier, vol. 81(C), pages 293-301.
    16. Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
    17. Zhang, Dapeng & Wang, Xiaokun (Cara), 2014. "Transit ridership estimation with network Kriging: a case study of Second Avenue Subway, NYC," Journal of Transport Geography, Elsevier, vol. 41(C), pages 107-115.
    18. Zhong, Haotian & Li, Wei, 2016. "Rail transit investment and property values: An old tale retold," Transport Policy, Elsevier, vol. 51(C), pages 33-48.
    19. Dohyung Kim & Yongjin Ahn & Simon Choi & Kwangkoo Kim, 2016. "Sustainable Mobility: Longitudinal Analysis of Built Environment on Transit Ridership," Sustainability, MDPI, vol. 8(10), pages 1-14, October.
    20. Anne Brown & Whitney LaValle, 2021. "Hailing a change: comparing taxi and ridehail service quality in Los Angeles," Transportation, Springer, vol. 48(2), pages 1007-1031, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:transp:v:41:y:2014:i:1:p:173-192. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.