IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v69y2018icp45-57.html
   My bibliography  Save this article

Spatial variations in urban public ridership derived from GPS trajectories and smart card data

Author

Listed:
  • Tu, Wei
  • Cao, Rui
  • Yue, Yang
  • Zhou, Baoding
  • Li, Qiuping
  • Li, Qingquan

Abstract

Understanding urban public ridership is essential for promoting public transportation. However, limited efforts have been made to reveal the spatial variations of multi-modal public ridership (such as buses, metro systems, and taxis) and the underlying controlling factors. This study explores multi-modal public ridership and compares the similarities and differences of the associated factors. Daily bus, metro, and taxi ridership patterns are first extracted from multiple sources of big transportation data, including vehicle (bus and taxi) GPS trajectories and smart card data. Multivariate regression analysis and geographically weighted regression analysis are used to reveal the associations between these data and demographic, land use, and transportation factors. An empirical study in Shenzhen, China, suggests that employment, mixed land use, and road density have significant effects on the ridership of each mode; however, some effects vary from negative to positive across the city. The results also indicate that road density, income, and metro accessibility do not have significant effects on metro, transit or bus ridership. These findings suggest that the effects of the associated factors vary depending on the mode of travel being considered and that the city should carefully consider which factors to emphasize in formulating future transport policy.

Suggested Citation

  • Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
  • Handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:45-57
    DOI: 10.1016/j.jtrangeo.2018.04.013
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692317304155
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2018.04.013?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    2. Miaoyi Li & Lei Dong & Zhenjiang Shen & Wei Lang & Xinyue Ye, 2017. "Examining the Interaction of Taxi and Subway Ridership for Sustainable Urbanization," Sustainability, MDPI, vol. 9(2), pages 1-12, February.
    3. Yu Liu & Chaogui Kang & Song Gao & Yu Xiao & Yuan Tian, 2012. "Understanding intra-urban trip patterns from taxi trajectory data," Journal of Geographical Systems, Springer, vol. 14(4), pages 463-483, October.
    4. Cynthia Chen & Don Varley & Jason Chen, 2011. "What Affects Transit Ridership? A Dynamic Analysis involving Multiple Factors, Lags and Asymmetric Behaviour," Urban Studies, Urban Studies Journal Limited, vol. 48(9), pages 1893-1908, July.
    5. Chiou, Yu-Chiun & Jou, Rong-Chang & Yang, Cheng-Han, 2015. "Factors affecting public transportation usage rate: Geographically weighted regression," Transportation Research Part A: Policy and Practice, Elsevier, vol. 78(C), pages 161-177.
    6. Fang, Zhixiang & Shaw, Shih-Lung & Tu, Wei & Li, Qingquan & Li, Yuguang, 2012. "Spatiotemporal analysis of critical transportation links based on time geographic concepts: a case study of critical bridges in Wuhan, China," Journal of Transport Geography, Elsevier, vol. 23(C), pages 44-59.
    7. Taylor, Brian D. & Fink, Camille N.Y., 2003. "The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature," University of California Transportation Center, Working Papers qt3xk9j8m2, University of California Transportation Center.
    8. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    9. Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
    10. Chakour, Vincent & Eluru, Naveen, 2016. "Examining the influence of stop level infrastructure and built environment on bus ridership in Montreal," Journal of Transport Geography, Elsevier, vol. 51(C), pages 205-217.
    11. Bowman, J. L. & Ben-Akiva, M. E., 2001. "Activity-based disaggregate travel demand model system with activity schedules," Transportation Research Part A: Policy and Practice, Elsevier, vol. 35(1), pages 1-28, January.
    12. Chuan Ding & Donggen Wang & Xiaolei Ma & Haiying Li, 2016. "Predicting Short-Term Subway Ridership and Prioritizing Its Influential Factors Using Gradient Boosting Decision Trees," Sustainability, MDPI, vol. 8(11), pages 1-16, October.
    13. Zhang, Dapeng & Wang, Xiaokun (Cara), 2014. "Transit ridership estimation with network Kriging: a case study of Second Avenue Subway, NYC," Journal of Transport Geography, Elsevier, vol. 41(C), pages 107-115.
    14. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    15. Luis Enrique Ramos-Santiago & Jeffrey Brown, 2016. "A comparative assessment of the factors associated with station-level streetcar versus light rail transit ridership in the United States," Urban Studies, Urban Studies Journal Limited, vol. 53(5), pages 915-935, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    2. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    3. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    4. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    5. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.
    6. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    7. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    8. Iseki, Hiroyuki & Liu, Chao & Knaap, Gerrit, 2018. "The determinants of travel demand between rail stations: A direct transit demand model using multilevel analysis for the Washington D.C. Metrorail system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 635-649.
    9. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    10. Kepaptsoglou, Konstantinos & Stathopoulos, Antony & Karlaftis, Matthew G., 2017. "Ridership estimation of a new LRT system: Direct demand model approach," Journal of Transport Geography, Elsevier, vol. 58(C), pages 146-156.
    11. Jiaoe Wang & Yanan Li & Jingjuan Jiao & Haitao Jin & Fangye Du, 2023. "Bus ridership and its determinants in Beijing: A spatial econometric perspective," Transportation, Springer, vol. 50(2), pages 383-406, April.
    12. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
    13. Jeongwoo Lee & Marlon Boarnet & Douglas Houston & Hilary Nixon & Steven Spears, 2017. "Changes in Service and Associated Ridership Impacts near a New Light Rail Transit Line," Sustainability, MDPI, vol. 9(10), pages 1-27, October.
    14. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    15. Diab, Ehab & Kasraian, Dena & Miller, Eric J. & Shalaby, Amer, 2020. "The rise and fall of transit ridership across Canada: Understanding the determinants," Transport Policy, Elsevier, vol. 96(C), pages 101-112.
    16. Yuxin He & Yang Zhao & Kwok Leung Tsui, 2021. "An adapted geographically weighted LASSO (Ada-GWL) model for predicting subway ridership," Transportation, Springer, vol. 48(3), pages 1185-1216, June.
    17. Jesper Bláfoss Ingvardson & Otto Anker Nielsen, 2022. "The influence of vicinity to stations, station characteristics and perceived safety on public transport mode choice: a case study from Copenhagen," Public Transport, Springer, vol. 14(2), pages 459-480, June.
    18. Yadi Zhu & Feng Chen & Zijia Wang & Jin Deng, 2019. "Spatio-temporal analysis of rail station ridership determinants in the built environment," Transportation, Springer, vol. 46(6), pages 2269-2289, December.
    19. Jurkowski Wojciech & Smolarski Mateusz, 2021. "The influence of transport offer on passenger traffic in the railway transport system in a post-socialist country: case study of Poland," Bulletin of Geography. Socio-economic Series, Sciendo, vol. 53(53), pages 33-42, September.
    20. Xia Li & Zhenyu Liu & Xinwei Ma, 2022. "Measuring Access and Egress Distance and Catchment Area of Multiple Feeding Modes for Metro Transferring Using Survey Data," Sustainability, MDPI, vol. 14(5), pages 1-16, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:69:y:2018:i:c:p:45-57. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.