IDEAS home Printed from https://ideas.repec.org/a/eee/jotrge/v19y2011i6p1081-1092.html
   My bibliography  Save this article

Transit ridership forecasting at station level: an approach based on distance-decay weighted regression

Author

Listed:
  • Gutiérrez, Javier
  • Cardozo, Osvaldo Daniel
  • García-Palomares, Juan Carlos

Abstract

This article develops a rapid response ridership forecast model, based on the combined use of Geographic Information Systems (GIS), distance-decay functions and multiple regression models. The number of passengers boarding at each station in the Madrid Metro network is estimated as a function of the characteristics of the stations (type, number of lines, accessibility within the network, etc.) and of the areas they serve (population and employment characteristics, land-use mix, street density, presence of feeder modes, etc.). The paper considers the need to evaluate the distance threshold used (not the choice of a fixed distance threshold by assimilation from other studies), the distance calculation procedure (network distance versus straight-line distance) and, above all, the use of distance-decay weighted regression (so that the data from the bands nearer the stations have a greater weighting in the model than those farther away). Analyses carried out show that weighting the variables according to the distance-decay functions provides systematically better results. The choice of distance threshold also significantly improves outcomes. When an all-or-nothing function is used, the way the service area is calculated (straight-line or network distances) does not seem to have a decisive influence on the results. However, it seems to be more influential when distance-decay weighting is used.

Suggested Citation

  • Gutiérrez, Javier & Cardozo, Osvaldo Daniel & García-Palomares, Juan Carlos, 2011. "Transit ridership forecasting at station level: an approach based on distance-decay weighted regression," Journal of Transport Geography, Elsevier, vol. 19(6), pages 1081-1092.
  • Handle: RePEc:eee:jotrge:v:19:y:2011:i:6:p:1081-1092
    DOI: 10.1016/j.jtrangeo.2011.05.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0966692311000512
    Download Restriction: no

    File URL: https://libkey.io/10.1016/j.jtrangeo.2011.05.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    2. Pierre Filion, 2001. "Suburban Mixed-Use Centres and Urban Dispersion: What Difference do they Make?," Environment and Planning A, , vol. 33(1), pages 141-160, January.
    3. Murray, Alan T., 2001. "Strategic analysis of public transport coverage," Socio-Economic Planning Sciences, Elsevier, vol. 35(3), pages 175-188, September.
    4. Cervero, Robert & Duncan, Michael, 2002. "Residential Self Selection and Rail Commuting: A Nested Logit Analysis," University of California Transportation Center, Working Papers qt1wg020cd, University of California Transportation Center.
    5. Taylor, Brian D. & Fink, Camille N.Y., 2003. "The Factors Influencing Transit Ridership: A Review and Analysis of the Ridership Literature," University of California Transportation Center, Working Papers qt3xk9j8m2, University of California Transportation Center.
    6. Giuliano, Genevieve, 2003. "Travel, location and race/ethnicity," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(4), pages 351-372, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tu, Wei & Cao, Rui & Yue, Yang & Zhou, Baoding & Li, Qiuping & Li, Qingquan, 2018. "Spatial variations in urban public ridership derived from GPS trajectories and smart card data," Journal of Transport Geography, Elsevier, vol. 69(C), pages 45-57.
    2. Iseki, Hiroyuki & Liu, Chao & Knaap, Gerrit, 2018. "The determinants of travel demand between rail stations: A direct transit demand model using multilevel analysis for the Washington D.C. Metrorail system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 635-649.
    3. Christopher Upchurch & Michael Kuby, 2014. "Evaluating light rail sketch planning: actual versus predicted station boardings in Phoenix," Transportation, Springer, vol. 41(1), pages 173-192, January.
    4. Pierre Filion & Kathleen McSpurren & Brad Appleby, 2006. "Wasted Density? The Impact of Toronto's Residential-Density-Distribution Policies on Public-Transit Use and Walking," Environment and Planning A, , vol. 38(7), pages 1367-1392, July.
    5. Wang, Donggen & Cao, Xinyu, 2017. "Impacts of the built environment on activity-travel behavior: Are there differences between public and private housing residents in Hong Kong?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 25-35.
    6. Kalkstein, Adam J & Kuby, Michael & Gerrity, Daniel & Clancy, James J, 2009. "An analysis of air mass effects on rail ridership in three US cities," Journal of Transport Geography, Elsevier, vol. 17(3), pages 198-207.
    7. Mamun, Sha A. & Lownes, Nicholas E. & Osleeb, Jeffrey P. & Bertolaccini, Kelly, 2013. "A method to define public transit opportunity space," Journal of Transport Geography, Elsevier, vol. 28(C), pages 144-154.
    8. Luis Enrique Ramos-Santiago & Jeffrey Brown, 2016. "A comparative assessment of the factors associated with station-level streetcar versus light rail transit ridership in the United States," Urban Studies, Urban Studies Journal Limited, vol. 53(5), pages 915-935, April.
    9. Alessandro Vitale & Giuseppe Guido & Daniele Rogano, 2016. "A smartphone based DSS platform for assessing transit service attributes," Public Transport, Springer, vol. 8(2), pages 315-340, September.
    10. Guerra, Erick & Cervero, Robert & Tischler, Daniel, 2011. "The Half-Mile Circle: Does It Represent Transit Station Catchments?," University of California Transportation Center, Working Papers qt0d84c2f4, University of California Transportation Center.
    11. Cervero, Robert, 2005. "Accessible Cities and Regions: A Framework for Sustainable Transport and Urbanism in the 21st Century," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt27g2q0cx, Institute of Transportation Studies, UC Berkeley.
    12. Karner, Alex & Niemeier, Deb, 2013. "Civil rights guidance and equity analysis methods for regional transportation plans: a critical review of literature and practice," Journal of Transport Geography, Elsevier, vol. 33(C), pages 126-134.
    13. Ahmed Daqrouq & Ardeshir Anjomani, 2019. "Public Transit Ridership and Car-Oriented Cities: The Case of the Dallas Region," Economies, MDPI, vol. 7(3), pages 1-17, August.
    14. Hugo M. Repolho & António P. Antunes & Richard L. Church, 2013. "Optimal Location of Railway Stations: The Lisbon-Porto High-Speed Rail Line," Transportation Science, INFORMS, vol. 47(3), pages 330-343, August.
    15. Donna, Javier D., 2018. "Measuring Long-Run Price Elasticities in Urban Travel Demand," MPRA Paper 90059, University Library of Munich, Germany.
    16. Ingvardson, Jesper Bláfoss & Nielsen, Otto Anker, 2018. "How urban density, network topology and socio-economy influence public transport ridership: Empirical evidence from 48 European metropolitan areas," Journal of Transport Geography, Elsevier, vol. 72(C), pages 50-63.
    17. Gkiotsalitis, K. & Cats, O. & Liu, T. & Bult, J.M., 2023. "An exact optimization method for coordinating the arrival times of urban rail lines at a common corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    18. Wenjia Zhang, 2016. "Does compact land use trigger a rise in crime and a fall in ridership? A role for crime in the land use–travel connection," Urban Studies, Urban Studies Journal Limited, vol. 53(14), pages 3007-3026, November.
    19. Miwa Matsuo, 2020. "Carpooling and drivers without household vehicles: gender disparity in automobility among Hispanics and non-Hispanics in the U.S," Transportation, Springer, vol. 47(4), pages 1631-1663, August.
    20. Klein, Nicholas J. & Guerra, Erick & Smart, Michael J., 2018. "The Philadelphia story: Age, race, gender and changing travel trends," Journal of Transport Geography, Elsevier, vol. 69(C), pages 19-25.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:jotrge:v:19:y:2011:i:6:p:1081-1092. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/journal-of-transport-geography .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.