IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v14y2022i23p16314-d995513.html
   My bibliography  Save this article

Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments

Author

Listed:
  • Zhenbao Wang

    (School of Architecture and Art, Hebei University of Engineering, Handan 056038, China)

  • Jiarui Song

    (School of Architecture and Art, Hebei University of Engineering, Handan 056038, China)

  • Yuchen Zhang

    (Department of Urban Studies and Planning, The University of Sheffield, Sheffield S10 2TN, UK)

  • Shihao Li

    (School of Architecture and Art, Hebei University of Engineering, Handan 056038, China)

  • Jianlin Jia

    (School of Civil Engineering, Inner Mongolia University of Technology, Hohhot 010051, China)

  • Chengcheng Song

    (Beijing Key Laboratory of Traffic Engineering, Beijing University of Technology, Beijing 100124, China)

Abstract

The accuracy of the regression model of ridership of subway stations depends on the scale range of the built environment around the subway stations. Previous studies have not considered the Modifiable Area Unit Problem (MAUP) to establish the regression model of subway station ridership. Taking Beijing as an example, this paper expanded the built environment variables from “5D” category to “7D” category, added indicators such as parking fee standard and population density factor, and proposed a Multi-Scale Geographical Weighted Regression (MGWR) model of outbound ridership of subway stations with standardized variables. The goodness of fit of regression models under 10 spatial scales or built environment around subway stations are compared, and the spatial heterogeneity of built environment factors under the optimal spatial scale of outbound ridership of subway stations during the morning peak on weekdays is discussed. The results show that: (1) the scale range overlapped by 1000 m radius circular buffer zone and Thiessen polygon has the highest explanatory power for the regression model, and is regarded as the optimal scale range of built environment; (2) the density of office facilities, sports and leisure facilities, medical service facilities, building density and floor area ratio (FAR) has a significant impact on the outbound ridership of all subway stations; (3) office facilities, catering facilities, FAR, number of parking lots, and whether subway stations are transfer stations have a positive impact on outbound ridership. The number of medical service facilities, sports and leisure facilities, bus stops and building density have a negative impact on outbound ridership; (4) the two added factors in this study: parking charge standard and population density, as the influencing factors of the built environment, have a significant impact on the outbound ridership of some subway stations; and (5) the different local coefficients of the built environment factors at different stations are discussed, which indicate the spatial heterogeneity on the outbound ridership. The results can provide an important theoretical basis for the prediction and analysis of demand of ridership at subway stations and the integration of the built environment around the stations.

Suggested Citation

  • Zhenbao Wang & Jiarui Song & Yuchen Zhang & Shihao Li & Jianlin Jia & Chengcheng Song, 2022. "Spatial Heterogeneity Analysis for Influencing Factors of Outbound Ridership of Subway Stations Considering the Optimal Scale Range of “7D” Built Environments," Sustainability, MDPI, vol. 14(23), pages 1-21, December.
  • Handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16314-:d:995513
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/14/23/16314/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/14/23/16314/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Reid Ewing & Robert Cervero, 2010. "Travel and the Built Environment," Journal of the American Planning Association, Taylor & Francis Journals, vol. 76(3), pages 265-294.
    2. Higgins, Christopher D. & Kanaroglou, Pavlos S., 2016. "A latent class method for classifying and evaluating the performance of station area transit-oriented development in the Toronto region," Journal of Transport Geography, Elsevier, vol. 52(C), pages 61-72.
    3. Kuby, Michael & Barranda, Anthony & Upchurch, Christopher, 2004. "Factors influencing light-rail station boardings in the United States," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(3), pages 223-247, March.
    4. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    5. Xingang Zhou & Anthony G. O. Yeh, 2021. "Understanding the modifiable areal unit problem and identifying appropriate spatial unit in jobs–housing balance and employment self-containment using big data," Transportation, Springer, vol. 48(3), pages 1267-1283, June.
    6. Jinbao Zhao & Wei Deng & Yan Song & Yueran Zhu, 2014. "Analysis of Metro ridership at station level and station-to-station level in Nanjing: an approach based on direct demand models," Transportation, Springer, vol. 41(1), pages 133-155, January.
    7. Jun, Myung-Jin & Choi, Keechoo & Jeong, Ji-Eun & Kwon, Ki-Hyun & Kim, Hee-Jae, 2015. "Land use characteristics of subway catchment areas and their influence on subway ridership in Seoul," Journal of Transport Geography, Elsevier, vol. 48(C), pages 30-40.
    8. A. Stewart Fotheringham & Wenbai Yang & Wei Kang, 2017. "Multiscale Geographically Weighted Regression (MGWR)," Annals of the American Association of Geographers, Taylor & Francis Journals, vol. 107(6), pages 1247-1265, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhenbao Wang & Xin Gong & Yuchen Zhang & Shuyue Liu & Ning Chen, 2023. "Multi-Scale Geographically Weighted Elasticity Regression Model to Explore the Elastic Effects of the Built Environment on Ride-Hailing Ridership," Sustainability, MDPI, vol. 15(6), pages 1-22, March.
    2. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shao, Qifan & Zhang, Wenjia & Cao, Xinyu & Yang, Jiawen & Yin, Jie, 2020. "Threshold and moderating effects of land use on metro ridership in Shenzhen: Implications for TOD planning," Journal of Transport Geography, Elsevier, vol. 89(C).
    2. Wang, Jing & Wan, Feng & Dong, Chunjiao & Yin, Chaoying & Chen, Xiaoyu, 2023. "Spatiotemporal effects of built environment factors on varying rail transit station ridership patterns," Journal of Transport Geography, Elsevier, vol. 109(C).
    3. Ding, Chuan & Cao, Xinyu & Liu, Chao, 2019. "How does the station-area built environment influence Metrorail ridership? Using gradient boosting decision trees to identify non-linear thresholds," Journal of Transport Geography, Elsevier, vol. 77(C), pages 70-78.
    4. Xiang Li & Qipeng Yan & Yafeng Ma & Chen Luo, 2023. "Spatially Varying Impacts of Built Environment on Transfer Ridership of Metro and Bus Systems," Sustainability, MDPI, vol. 15(10), pages 1-24, May.
    5. Lei Pang & Yuxiao Jiang & Jingjing Wang & Ning Qiu & Xiang Xu & Lijian Ren & Xinyu Han, 2023. "Research of Metro Stations with Varying Patterns of Ridership and Their Relationship with Built Environment, on the Example of Tianjin, China," Sustainability, MDPI, vol. 15(12), pages 1-18, June.
    6. Du, Qiang & Zhou, Yuqing & Huang, Youdan & Wang, Yalei & Bai, Libiao, 2022. "Spatiotemporal exploration of the non-linear impacts of accessibility on metro ridership," Journal of Transport Geography, Elsevier, vol. 102(C).
    7. Li, Shaoying & Lyu, Dijiang & Huang, Guanping & Zhang, Xiaohu & Gao, Feng & Chen, Yuting & Liu, Xiaoping, 2020. "Spatially varying impacts of built environment factors on rail transit ridership at station level: A case study in Guangzhou, China," Journal of Transport Geography, Elsevier, vol. 82(C).
    8. Vergel-Tovar, C. Erik & Rodriguez, Daniel A., 2018. "The ridership performance of the built environment for BRT systems: Evidence from Latin America," Journal of Transport Geography, Elsevier, vol. 73(C), pages 172-184.
    9. Gao, Fan & Yang, Linchuan & Han, Chunyang & Tang, Jinjun & Li, Zhitao, 2022. "A network-distance-based geographically weighted regression model to examine spatiotemporal effects of station-level built environments on metro ridership," Journal of Transport Geography, Elsevier, vol. 105(C).
    10. Liu, Xiang & Chen, Xiaohong & Tian, Mingshu & De Vos, Jonas, 2023. "Effects of buffer size on associations between the built environment and metro ridership: A machine learning-based sensitive analysis," Journal of Transport Geography, Elsevier, vol. 113(C).
    11. Aston, Laura & Currie, Graham & Kamruzzaman, Md. & Delbosc, Alexa & Teller, David, 2020. "Study design impacts on built environment and transit use research," Journal of Transport Geography, Elsevier, vol. 82(C).
    12. Jesper Bláfoss Ingvardson & Otto Anker Nielsen, 2022. "The influence of vicinity to stations, station characteristics and perceived safety on public transport mode choice: a case study from Copenhagen," Public Transport, Springer, vol. 14(2), pages 459-480, June.
    13. Iseki, Hiroyuki & Liu, Chao & Knaap, Gerrit, 2018. "The determinants of travel demand between rail stations: A direct transit demand model using multilevel analysis for the Washington D.C. Metrorail system," Transportation Research Part A: Policy and Practice, Elsevier, vol. 116(C), pages 635-649.
    14. Su, Shiliang & Zhao, Chong & Zhou, Hao & Li, Bozhao & Kang, Mengjun, 2022. "Unraveling the relative contribution of TOD structural factors to metro ridership: A novel localized modeling approach with implications on spatial planning," Journal of Transport Geography, Elsevier, vol. 100(C).
    15. Rao, Fujie & Pafka, Elek, 2021. "Shopping morphologies of urban transit station areas: A comparative study of central city station catchments in Toronto, San Francisco, and Melbourne," Journal of Transport Geography, Elsevier, vol. 96(C).
    16. Andersson, David Emanuel & Shyr, Oliver F. & Yang, Jimmy, 2021. "Neighbourhood effects on station-level transit use: Evidence from the Taipei metro," Journal of Transport Geography, Elsevier, vol. 94(C).
    17. Xia Li & Zhenyu Liu & Xinwei Ma, 2022. "Measuring Access and Egress Distance and Catchment Area of Multiple Feeding Modes for Metro Transferring Using Survey Data," Sustainability, MDPI, vol. 14(5), pages 1-16, February.
    18. Shin, Yonggeun & Kim, Dong-Kyu & Kim, Eui-Jin, 2022. "Activity-based TOD typology for seoul transit station areas using smart-card data," Journal of Transport Geography, Elsevier, vol. 105(C).
    19. Liu, Yunzhe & Singleton, Alex & Arribas-Bel, Daniel, 2020. "Considering context and dynamics: A classification of transit-orientated development for New York City," Journal of Transport Geography, Elsevier, vol. 85(C).
    20. Zhuangbin Shi & Ning Zhang & Yang Liu & Wei Xu, 2018. "Exploring Spatiotemporal Variation in Hourly Metro Ridership at Station Level: The Influence of Built Environment and Topological Structure," Sustainability, MDPI, vol. 10(12), pages 1-16, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:14:y:2022:i:23:p:16314-:d:995513. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.