IDEAS home Printed from https://ideas.repec.org/a/kap/theord/v76y2014i3p343-361.html
   My bibliography  Save this article

Games with a local permission structure: separation of authority and value generation

Author

Listed:
  • René Brink
  • Chris Dietz

Abstract

It is known that peer group games are a special class of games with a permission structure. However, peer group games are also a special class of (weighted) digraph games. To be specific, they are digraph games in which the digraph is the transitive closure of a rooted tree. In this paper we first argue that some known results on solutions for peer group games hold more general for digraph games. Second, we generalize both digraph games as well as games with a permission structure into a model called games with a local permission structure, where every player needs permission from its predecessors only to generate worth, but does not need its predecessors to give permission to its own successors. We introduce and axiomatize a Shapley value-type solution for these games, generalizing the conjunctive permission value for games with a permission structure and the $$\beta $$ β -measure for weighted digraphs. Copyright Springer Science+Business Media New York 2014

Suggested Citation

  • René Brink & Chris Dietz, 2014. "Games with a local permission structure: separation of authority and value generation," Theory and Decision, Springer, vol. 76(3), pages 343-361, March.
  • Handle: RePEc:kap:theord:v:76:y:2014:i:3:p:343-361
    DOI: 10.1007/s11238-013-9372-5
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11238-013-9372-5
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11238-013-9372-5?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Oliver E. Williamson, 1967. "Hierarchical Control and Optimum Firm Size," Journal of Political Economy, University of Chicago Press, vol. 75(2), pages 123-123.
    2. Curiel, I. & Potters, J.A.M. & Rajendra Prasad, V. & Tijs, S.H. & Veltman, B., 1994. "Sequencing and cooperation," Other publications TiSEM be67f9e9-7a4a-47f1-9fb9-7, Tilburg University, School of Economics and Management.
    3. Graham, Daniel A & Marshall, Robert C & Richard, Jean-Francois, 1990. "Differential Payments within a Bidder Coalition and the Shapley Value," American Economic Review, American Economic Association, vol. 80(3), pages 493-510, June.
    4. René Brink, 2008. "Vertical wage differences in hierarchically structured firms," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 30(2), pages 225-243, February.
    5. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    6. René van den Brink, 2002. "The apex power measure for directed networks," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 19(4), pages 845-867.
    7. Maniquet, Francois, 2003. "A characterization of the Shapley value in queueing problems," Journal of Economic Theory, Elsevier, vol. 109(1), pages 90-103, March.
    8. R.J. Aumann & S. Hart (ed.), 2002. "Handbook of Game Theory with Economic Applications," Handbook of Game Theory with Economic Applications, Elsevier, edition 1, volume 3, number 3.
    9. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2000. "The position value for union stable systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 52(2), pages 221-236, November.
    10. E. Algaba & J. M. Bilbao & R. van den Brink & A. Jiménez-Losada, 2004. "An axiomatization of the Banzhaf value for cooperative games on antimatroids," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 59(1), pages 147-166, February.
    11. Imma Curiel & Jos Potters & Rajendra Prasad & Stef Tijs & Bart Veltman, 1994. "Sequencing and Cooperation," Operations Research, INFORMS, vol. 42(3), pages 566-568, June.
    12. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
    13. Rodica Brânzei & Vito Fragnelli & Stef Tijs, 2002. "Tree-connected peer group situations and peer group games," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 55(1), pages 93-106, March.
    14. Gernot Grabher & Walter W. Powell (ed.), 2004. "Networks," Books, Edward Elgar Publishing, volume 0, number 2771.
    15. René van den Brink & Peter Borm, 2002. "Digraph Competitions and Cooperative Games," Theory and Decision, Springer, vol. 53(4), pages 327-342, December.
    16. E. Algaba & J. M. Bilbao & R. van den Brink & A. Jiménez-Losada, 2003. "Axiomatizations of the Shapley value for cooperative games on antimatroids," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 57(1), pages 49-65, April.
    17. S. C. Littlechild & G. Owen, 1973. "A Simple Expression for the Shapley Value in a Special Case," Management Science, INFORMS, vol. 20(3), pages 370-372, November.
    18. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    19. Curiel, I. & Potters, J.A.M. & Rajendra Prasad, V. & Tijs, S.H. & Veltman, B., 1993. "Cooperation in one machine scheduling," Other publications TiSEM 9c5ceec5-2080-4b5c-98d5-0, Tilburg University, School of Economics and Management.
    20. Maschler, Michael, 1992. "The bargaining set, kernel, and nucleolus," Handbook of Game Theory with Economic Applications, in: R.J. Aumann & S. Hart (ed.), Handbook of Game Theory with Economic Applications, edition 1, volume 1, chapter 18, pages 591-667, Elsevier.
    21. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    22. René Brink & Pieter Ruys, 2008. "Technology driven organizational structure of the firm," Annals of Finance, Springer, vol. 4(4), pages 481-503, October.
    23. Graham, Daniel A & Marshall, Robert C, 1987. "Collusive Bidder Behavior at Single-Object Second-Price and English Auctions," Journal of Political Economy, University of Chicago Press, vol. 95(6), pages 1217-1239, December.
    24. E. Algaba & J. M. Bilbao & P. Borm & J. J. López, 2001. "The Myerson value for union stable structures," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 54(3), pages 359-371, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    2. Sylvain Béal & Marc Deschamps & Alexandre Skoda, 2024. "The neighborhood value for cooperative graph games [La valeur de voisinage pour les jeux de graphes coopératifs]," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-04690500, HAL.
    3. Sylvain Béal & Marc Deschamps & Alexandre Skoda, 2024. "The neighborhood value for cooperative graph games [La valeur de voisinage pour les jeux de graphes coopératifs]," Working Papers hal-04690500, HAL.
    4. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    5. Hao Wu & Rene van den Brink & Arantza Estevez-Fernandez, 2022. "The locally partial permission value for games with a permission structure," Tinbergen Institute Discussion Papers 22-037/II, Tinbergen Institute.
    6. René Brink & Chris Dietz & Gerard Laan & Genjiu Xu, 2017. "Comparable characterizations of four solutions for permission tree games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(4), pages 903-923, April.
    7. Sylvain Béal & Marc Deschamps & Alexandre Skoda, 2024. "The neighborhood value for cooperative graph games," Working Papers 2024-16, CRESE.
    8. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    9. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    10. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    11. A. Jiménez-Losada, 2017. "Comments on: Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 39-41, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    2. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    3. René Brink, 2012. "On hierarchies and communication," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 721-735, October.
    4. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    5. René Brink & P. Herings & Gerard Laan & A. Talman, 2015. "The Average Tree permission value for games with a permission tree," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 58(1), pages 99-123, January.
    6. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    7. Rene van den Brink & Ilya Katsev & Gerard van der Laan, 2023. "Properties of Solutions for Games on Union-Closed Systems," Mathematics, MDPI, vol. 11(4), pages 1-16, February.
    8. René Brink & Gerard Laan & Valeri Vasil’ev, 2007. "Component efficient solutions in line-graph games with applications," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 33(2), pages 349-364, November.
    9. Emilio Calvo & Esther Gutiérrez-López, 2015. "The value in games with restricted cooperation," Discussion Papers in Economic Behaviour 0115, University of Valencia, ERI-CES.
    10. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    11. René Brink & Ilya Katsev & Gerard Laan, 2011. "Axiomatizations of two types of Shapley values for games on union closed systems," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 47(1), pages 175-188, May.
    12. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.
    13. Subhadip Chakrabarti & Amandine Ghintran & Rajnish Kumar, 2019. "Assignment of heterogeneous agents in trees under the permission value," Review of Economic Design, Springer;Society for Economic Design, vol. 23(3), pages 155-188, December.
    14. René Brink & Chris Dietz & Gerard Laan & Genjiu Xu, 2017. "Comparable characterizations of four solutions for permission tree games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(4), pages 903-923, April.
    15. M. Álvarez-Mozos & R. Brink & G. Laan & O. Tejada, 2017. "From hierarchies to levels: new solutions for games with hierarchical structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 46(4), pages 1089-1113, November.
    16. Wu, Hao & van den Brink, René & Estévez-Fernández, Arantza, 2024. "Highway toll allocation," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    17. Encarnación Algaba & René Brink & Chris Dietz, 2017. "Power Measures and Solutions for Games Under Precedence Constraints," Journal of Optimization Theory and Applications, Springer, vol. 172(3), pages 1008-1022, March.
    18. van den Brink, René & González-Arangüena, Enrique & Manuel, Conrado & del Pozo, Mónica, 2014. "Order monotonic solutions for generalized characteristic functions," European Journal of Operational Research, Elsevier, vol. 238(3), pages 786-796.
    19. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 2007. "Distributing Dividends in Games with Ordered Players," Tinbergen Institute Discussion Papers 06-114/1, Tinbergen Institute.
    20. Encarnacion Algaba & Rene van den Brink, 2019. "The Shapley Value and Games with Hierarchies," Tinbergen Institute Discussion Papers 19-064/II, Tinbergen Institute.

    More about this item

    Keywords

    Cooperative TU-game; Peer group game; Digraph game ; Game with a permission structure; Local permission structure;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:theord:v:76:y:2014:i:3:p:343-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.