IDEAS home Printed from https://ideas.repec.org/p/tiu/tiutis/5b7e5664-1a44-4e09-9186-694e4c592b16.html
   My bibliography  Save this paper

Tree-connected Peer Group Situations and Peer Group Games

Author

Listed:
  • Brânzei, R.

    (Tilburg University, School of Economics and Management)

  • Fragnelli, V.
  • Tijs, S.H.

    (Tilburg University, School of Economics and Management)

Abstract

A class of cooperative games arising from economic and operations research situations in which agents with potential individual possibilities are connected via a hierarchy within an organization is introduced. It is shown that the games in this class form a cone which lies in the intersection of convex games and monotonic veto-rich games with the leader of the organization as veto-player. Different economic situations like auctions, communication situations, sequencing situations and flow situations are related to peer group games. For peer group games classical solution concepts have nice computational properties. Copyright Springer-Verlag Berlin Heidelberg 2002
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)
(This abstract was borrowed from another version of this item.)

Suggested Citation

  • Brânzei, R. & Fragnelli, V. & Tijs, S.H., 2000. "Tree-connected Peer Group Situations and Peer Group Games," Other publications TiSEM 5b7e5664-1a44-4e09-9186-6, Tilburg University, School of Economics and Management.
  • Handle: RePEc:tiu:tiutis:5b7e5664-1a44-4e09-9186-694e4c592b16
    as

    Download full text from publisher

    File URL: https://pure.uvt.nl/ws/portalfiles/portal/537624/117.pdf
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Borm, P.E.M. & van den Nouweland, C.G.A.M. & Tijs, S.H., 1991. "Cooperation and communication restrictions : A survey," Other publications TiSEM 7d1c34fd-9403-4917-8b1a-1, Tilburg University, School of Economics and Management.
    2. Brânzei, R. & Fragnelli, V. & Tijs, S.H., 2000. "On the computation of the nucleolus of line-graph peer group games," Other publications TiSEM fd889ce3-d034-47a2-9f6b-2, Tilburg University, School of Economics and Management.
    3. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    4. Sprumont, Yves, 1990. "Population monotonic allocation schemes for cooperative games with transferable utility," Games and Economic Behavior, Elsevier, vol. 2(4), pages 378-394, December.
    5. SCHMEIDLER, David, 1969. "The nucleolus of a characteristic function game," LIDAM Reprints CORE 44, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Curiel, I. & Pederzoli, G. & Tijs, S.H., 1989. "Sequencing games," Other publications TiSEM cd695be5-0f54-4548-a952-2, Tilburg University, School of Economics and Management.
    7. Ehud Kalai & Eitan Zemel, 1982. "Generalized Network Problems Yielding Totally Balanced Games," Operations Research, INFORMS, vol. 30(5), pages 998-1008, October.
    8. Potters, Jos & Reijnierse, Hans, 1995. "Gamma-Component Additive Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 24(1), pages 49-56.
    9. Wayne E. Smith, 1956. "Various optimizers for single‐stage production," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 3(1‐2), pages 59-66, March.
    10. Vincent Feltkamp & Javier Arin, 1997. "The Nucleolus and Kernel of Veto-Rich Transferable Utility Games," International Journal of Game Theory, Springer;Game Theory Society, vol. 26(1), pages 61-73.
    11. Jean Derks & Hans Haller & Hans Peters, 2000. "The selectope for cooperative games," International Journal of Game Theory, Springer;Game Theory Society, vol. 29(1), pages 23-38.
    12. Ehud Kalai & Eitan Zemel, 1982. "Totally Balanced Games and Games of Flow," Mathematics of Operations Research, INFORMS, vol. 7(3), pages 476-478, August.
    13. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    14. Morton Davis & Michael Maschler, 1965. "The kernel of a cooperative game," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 12(3), pages 223-259, September.
    15. Curiel, Imma & Pederzoli, Giorgio & Tijs, Stef, 1989. "Sequencing games," European Journal of Operational Research, Elsevier, vol. 40(3), pages 344-351, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Borm & Herbert Hamers & Ruud Hendrickx, 2001. "Operations research games: A survey," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 9(2), pages 139-199, December.
    2. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 2007. "Distributing Dividends in Games with Ordered Players," Tinbergen Institute Discussion Papers 06-114/1, Tinbergen Institute.
    3. René van den Brink & Gerard van der Laan & Valeri Vasil'ev, 0000. "The Restricted Core for Totally Positive Games with Ordered Players," Tinbergen Institute Discussion Papers 09-038/1, Tinbergen Institute.
    4. René Brink & Gerard Laan & Valeri Vasil’ev, 2014. "Constrained core solutions for totally positive games with ordered players," International Journal of Game Theory, Springer;Game Theory Society, vol. 43(2), pages 351-368, May.
    5. René van den Brink & Ilya Katsev & Gerard van der Laan, 2008. "An Algorithm for Computing the Nucleolus of Disjunctive Additive Games with An Acyclic Permission Structure," Tinbergen Institute Discussion Papers 08-104/1, Tinbergen Institute.
    6. J. Arin & V. Feltkamp & M. Montero, 2015. "A bargaining procedure leading to the serial rule in games with veto players," Annals of Operations Research, Springer, vol. 229(1), pages 41-66, June.
    7. Rodica Brânzei & Tamás Solymosi & Stef Tijs, 2005. "Strongly essential coalitions and the nucleolus of peer group games," International Journal of Game Theory, Springer;Game Theory Society, vol. 33(3), pages 447-460, September.
    8. Lohmann, E.R.M.A. & Borm, P.E.M. & Slikker, M., 2010. "Preparation Sequencing Situations and Related Games," Discussion Paper 2010-31, Tilburg University, Center for Economic Research.
    9. Michel Grabisch, 2013. "The core of games on ordered structures and graphs," Annals of Operations Research, Springer, vol. 204(1), pages 33-64, April.
    10. Arantza Estévez-Fernández & Peter Borm & Pedro Calleja & Herbert Hamers, 2008. "Sequencing games with repeated players," Annals of Operations Research, Springer, vol. 158(1), pages 189-203, February.
    11. René Brink & Ilya Katsev & Gerard Laan, 2011. "A polynomial time algorithm for computing the nucleolus for a class of disjunctive games with a permission structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 40(3), pages 591-616, August.
    12. Hamers, Herbert, 1997. "On the concavity of delivery games," European Journal of Operational Research, Elsevier, vol. 99(2), pages 445-458, June.
    13. Zhao, Jingang, 1999. "A necessary and sufficient condition for the convexity in oligopoly games," Mathematical Social Sciences, Elsevier, vol. 37(2), pages 189-204, March.
    14. René van den Brink & Ilya Katsev & Gerard van der Laan, 2008. "Computation of the Nucleolus for a Class of Disjunctive Games with a Permission Structure," Tinbergen Institute Discussion Papers 08-060/1, Tinbergen Institute.
    15. Sylvain Béal & Amandine Ghintran & Eric Rémila & Philippe Solal, 2015. "The sequential equal surplus division for rooted forest games and an application to sharing a river with bifurcations," Theory and Decision, Springer, vol. 79(2), pages 251-283, September.
    16. Marieke Quant & Marc Meertens & Hans Reijnierse, 2008. "Processing games with shared interest," Annals of Operations Research, Springer, vol. 158(1), pages 219-228, February.
    17. H. Andrew Michener & Daniel J. Myers, 1998. "Probabilistic Coalition Structure Theories," Journal of Conflict Resolution, Peace Science Society (International), vol. 42(6), pages 830-860, December.
    18. Ichiro Nishizaki & Tomohiro Hayashida & Yuki Shintomi, 2016. "A core-allocation for a network restricted linear production game," Annals of Operations Research, Springer, vol. 238(1), pages 389-410, March.
    19. Cristina Fernández & Peter Borm & Ruud Hendrickx & Stef Tijs, 2005. "Drop out monotonic rules for sequencing situations," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 61(3), pages 501-504, July.
    20. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.

    More about this item

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tiu:tiutis:5b7e5664-1a44-4e09-9186-694e4c592b16. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Richard Broekman (email available below). General contact details of provider: https://www.tilburguniversity.edu/about/schools/economics-and-management/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.