IDEAS home Printed from https://ideas.repec.org/p/tin/wpaper/20220037.html
   My bibliography  Save this paper

The locally partial permission value for games with a permission structure

Author

Listed:
  • Hao Wu

    (Hunan University)

  • Rene van den Brink

    (Vrije Universiteit Amsterdam)

  • Arantza Estevez-Fernandez

    (Vrije Universiteit Amsterdam)

Abstract

Cooperative games with a permission structure are useful tools for analyzing the impact of hierarchical structures on allocation problems in Economics and Operations Research. In this paper, we propose a generalization of the local disjunctive and the local conjunctive permission approaches called the k-local permission approach. In this approach, every player needs permission from a certain number of its predecessors to cooperate in a coalition. The special case where every player needs permission from at least one of, respectively all, its predecessors coincides with the local disjunctive, respectively local conjunctive, approach in the literature. We de ne and characterize a corresponding k-local permission value. After that, we apply this value to de ne a new class of power measures for directed graphs. We axiomatize these power measures, and apply some of them to two classical networks in the literature.

Suggested Citation

  • Hao Wu & Rene van den Brink & Arantza Estevez-Fernandez, 2022. "The locally partial permission value for games with a permission structure," Tinbergen Institute Discussion Papers 22-037/II, Tinbergen Institute.
  • Handle: RePEc:tin:wpaper:20220037
    as

    Download full text from publisher

    File URL: https://papers.tinbergen.nl/22037.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. René Brink & Chris Dietz, 2014. "Games with a local permission structure: separation of authority and value generation," Theory and Decision, Springer, vol. 76(3), pages 343-361, March.
    2. Roger B. Myerson, 1977. "Graphs and Cooperation in Games," Mathematics of Operations Research, INFORMS, vol. 2(3), pages 225-229, August.
    3. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.
    4. van den Brink, Rene & Gilles, Robert P., 1996. "Axiomatizations of the Conjunctive Permission Value for Games with Permission Structures," Games and Economic Behavior, Elsevier, vol. 12(1), pages 113-126, January.
    5. Wei, Daijun & Deng, Xinyang & Zhang, Xiaoge & Deng, Yong & Mahadevan, Sankaran, 2013. "Identifying influential nodes in weighted networks based on evidence theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(10), pages 2564-2575.
    6. Dehez, Pierre & Ferey, Samuel, 2013. "How to share joint liability: A cooperative game approach," Mathematical Social Sciences, Elsevier, vol. 66(1), pages 44-50.
    7. René van den Brink & Peter Borm, 2002. "Digraph Competitions and Cooperative Games," Theory and Decision, Springer, vol. 53(4), pages 327-342, December.
    8. Gilles, Robert P & Owen, Guillermo & van den Brink, Rene, 1992. "Games with Permission Structures: The Conjunctive Approach," International Journal of Game Theory, Springer;Game Theory Society, vol. 20(3), pages 277-293.
    9. van den Brink, René & He, Simin & Huang, Jia-Ping, 2018. "Polluted river problems and games with a permission structure," Games and Economic Behavior, Elsevier, vol. 108(C), pages 182-205.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Encarnacion Algaba & Rene van den Brink, 2021. "Networks, Communication and Hierarchy: Applications to Cooperative Games," Tinbergen Institute Discussion Papers 21-019/IV, Tinbergen Institute.
    2. René Brink, 2017. "Games with a permission structure - A survey on generalizations and applications," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 25(1), pages 1-33, April.
    3. Tobias Hiller, 2021. "Hierarchy and the size of a firm," International Review of Economics, Springer;Happiness Economics and Interpersonal Relations (HEIRS), vol. 68(3), pages 389-404, September.
    4. David Lowing, 2023. "Allocation rules for multi-choice games with a permission tree structure," Annals of Operations Research, Springer, vol. 320(1), pages 261-291, January.
    5. René Brink & Chris Dietz, 2014. "Games with a local permission structure: separation of authority and value generation," Theory and Decision, Springer, vol. 76(3), pages 343-361, March.
    6. Takayuki Oishi & Gerard van der Laan & René van den Brink, 2023. "Axiomatic analysis of liability problems with rooted-tree networks in tort law," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 75(1), pages 229-258, January.
    7. Hao Wu & Rene van den Brink & Arantza Estevez-Fernandez, 2022. "Highway toll allocation," Tinbergen Institute Discussion Papers 22-036/II, Tinbergen Institute.
    8. Sylvain Béal & Sylvain Ferrières & Philippe Solal, 2022. "The priority value for cooperative games with a priority structure," International Journal of Game Theory, Springer;Game Theory Society, vol. 51(2), pages 431-450, June.
    9. René Brink & Chris Dietz & Gerard Laan & Genjiu Xu, 2017. "Comparable characterizations of four solutions for permission tree games," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 63(4), pages 903-923, April.
    10. Jens Gudmundsson & Jens Leth Hougaard & Chiu Yu Ko, 2020. "Sharing sequentially triggered losses," IFRO Working Paper 2020/05, University of Copenhagen, Department of Food and Resource Economics.
    11. Wu, Hao & van den Brink, René & Estévez-Fernández, Arantza, 2024. "Highway toll allocation," Transportation Research Part B: Methodological, Elsevier, vol. 180(C).
    12. René van den Brink & Ilya Katsev & Gerard van der Laan, 2008. "An Algorithm for Computing the Nucleolus of Disjunctive Additive Games with An Acyclic Permission Structure," Tinbergen Institute Discussion Papers 08-104/1, Tinbergen Institute.
    13. C. Manuel & D. Martín, 2021. "A value for communication situations with players having different bargaining abilities," Annals of Operations Research, Springer, vol. 301(1), pages 161-182, June.
    14. Hougaard, Jens Leth & Moreno-Ternero, Juan D. & Tvede, Mich & Østerdal, Lars Peter, 2017. "Sharing the proceeds from a hierarchical venture," Games and Economic Behavior, Elsevier, vol. 102(C), pages 98-110.
    15. Tobias Hiller, 2018. "The Effects of Excluding Coalitions," Games, MDPI, vol. 9(1), pages 1-7, January.
    16. Subhadip Chakrabarti & Amandine Ghintran & Rajnish Kumar, 2019. "Assignment of heterogeneous agents in trees under the permission value," Review of Economic Design, Springer;Society for Economic Design, vol. 23(3), pages 155-188, December.
    17. René Brink, 2012. "On hierarchies and communication," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 39(4), pages 721-735, October.
    18. René van den Brink, 2017. "Games with a Permission Structure: a survey on generalizations and applications," Tinbergen Institute Discussion Papers 17-016/II, Tinbergen Institute.
    19. E. C. Gavilán & C. Manuel & R. Brink, 2023. "Directed communication in games with directed graphs," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 31(3), pages 584-617, October.
    20. Slikker, M. & Gilles, R.P. & Norde, H.W. & Tijs, S.H., 2000. "Directed Communication Networks," Other publications TiSEM 00f2df6e-3a8e-4ed3-84cf-2, Tilburg University, School of Economics and Management.

    More about this item

    Keywords

    TU-game; Hierarchical structure; Shapley value; Axiomatization; Digraph; Power measure;
    All these keywords.

    JEL classification:

    • C71 - Mathematical and Quantitative Methods - - Game Theory and Bargaining Theory - - - Cooperative Games

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:tin:wpaper:20220037. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tinbergen Office +31 (0)10-4088900 (email available below). General contact details of provider: https://edirc.repec.org/data/tinbenl.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.