IDEAS home Printed from https://ideas.repec.org/a/inm/ormnsc/v70y2024i11p7559-7578.html
   My bibliography  Save this article

Customer Preferences for Delivery Service Attributes in Attended Home Delivery

Author

Listed:
  • Pedro Amorim

    (Institute for Systems and Computer Engineering, Technology and Science, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal)

  • Nicole DeHoratius

    (Booth School of Business, University of Chicago, Chicago, Illinois 60637)

  • Fredrik Eng-Larsson

    (Stockholm Business School, Stockholm University, SE-106 91 Stockholm, Sweden)

  • Sara Martins

    (Institute for Systems and Computer Engineering, Technology and Science, Faculty of Engineering, University of Porto, 4200-465 Porto, Portugal; Center for Research and Innovation in Business Sciences and Information Systems, ESTG, Polytechnic of Porto, 4610-156 Felgueiras, Portugal)

Abstract

Retailers face increasing competitive pressure to determine how best to deliver products purchased online to the end customer. Grocery retailers often require attended home delivery where the customer must be present to receive the delivery. For attended home delivery to function, the retailer and customer must agree on a delivery time slot that works for both parties. Using online data from a grocery retailer, we observe customer preferences for three delivery service attributes associated with each time slot: speed, precision, and timing. We define speed as the expected time between the placement of an order and its delivery, precision as the duration of the offered time slot, and timing as the availability of choices across times of the day and days of the week. We show that customers not only value speed as an attribute of delivery service but that precision and timing are also key drivers of the customer’s time slot selection process. We also observe substantial customer heterogeneity in the willingness of customers to pay for time slots. Customers that differ in their loyalty to the retailer, basket value, basket size, and basket composition exhibit distinct differences in their willingness to pay. We show that retailers with the capability to tailor their time slot offerings to specific customer segments have the potential to generate approximately 9% more shipping revenue than those who cannot. Our findings inform practitioners seeking to design competitive fulfillment strategies and academics modeling customer behavior in the attended home delivery context.

Suggested Citation

  • Pedro Amorim & Nicole DeHoratius & Fredrik Eng-Larsson & Sara Martins, 2024. "Customer Preferences for Delivery Service Attributes in Attended Home Delivery," Management Science, INFORMS, vol. 70(11), pages 7559-7578, November.
  • Handle: RePEc:inm:ormnsc:v:70:y:2024:i:11:p:7559-7578
    DOI: 10.1287/mnsc.2020.01274
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/mnsc.2020.01274
    Download Restriction: no

    File URL: https://libkey.io/10.1287/mnsc.2020.01274?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    2. Ann Melissa Campbell & Martin W. P. Savelsbergh, 2005. "Decision Support for Consumer Direct Grocery Initiatives," Transportation Science, INFORMS, vol. 39(3), pages 313-327, August.
    3. Erik Brynjolfsson & Yu (Jeffrey) Hu & Mohammad S. Rahman, 2009. "Battle of the Retail Channels: How Product Selection and Geography Drive Cross-Channel Competition," Management Science, INFORMS, vol. 55(11), pages 1755-1765, November.
    4. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    5. Xinan Yang & Arne K. Strauss & Christine S. M. Currie & Richard Eglese, 2016. "Choice-Based Demand Management and Vehicle Routing in E-Fulfillment," Transportation Science, INFORMS, vol. 50(2), pages 473-488, May.
    6. Ann Melissa Campbell & Martin Savelsbergh, 2006. "Incentive Schemes for Attended Home Delivery Services," Transportation Science, INFORMS, vol. 40(3), pages 327-341, August.
    7. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    8. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    9. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521766555, November.
    10. Niels Agatz & Ann Campbell & Moritz Fleischmann & Martin Savelsbergh, 2011. "Time Slot Management in Attended Home Delivery," Transportation Science, INFORMS, vol. 45(3), pages 435-449, August.
    11. Katherine Milkman & Todd Rogers & Max Bazerman, 2010. "I’ll have the ice cream soon and the vegetables later: A study of online grocery purchases and order lead time," Marketing Letters, Springer, vol. 21(1), pages 17-35, March.
    12. J. Miguel Villas-Boas & Russell S. Winer, 1999. "Endogeneity in Brand Choice Models," Management Science, INFORMS, vol. 45(10), pages 1324-1338, October.
    13. Pradeep K. Chintagunta & Junhong Chu & Javier Cebollada, 2012. "Quantifying Transaction Costs in Online/Off-line Grocery Channel Choice," Marketing Science, INFORMS, vol. 31(1), pages 96-114, January.
    14. Cristian Angelo Guevara & Moshe E. Ben-Akiva, 2012. "Change of Scale and Forecasting with the Control-Function Method in Logit Models," Transportation Science, INFORMS, vol. 46(3), pages 425-437, August.
    15. Peter E. Rossi & Robert E. McCulloch & Greg M. Allenby, 1996. "The Value of Purchase History Data in Target Marketing," Marketing Science, INFORMS, vol. 15(4), pages 321-340.
    16. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Reply to Comments on “Bayesian Analysis of Simultaneous Demand and Supply”," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 299-304, September.
    17. Gregory R. Heim & Kingshuk K. Sinha, 2001. "Operational Drivers of Customer Loyalty in Electronic Retailing: An Empirical Analysis of Electronic Food Retailers," Manufacturing & Service Operations Management, INFORMS, vol. 3(3), pages 264-271, July.
    18. Amil Petrin & Kenneth Train, 2003. "Omitted Product Attributes in Discrete Choice Models," NBER Working Papers 9452, National Bureau of Economic Research, Inc.
    19. Strauss, Arne & Gülpınar, Nalan & Zheng, Yijun, 2021. "Dynamic pricing of flexible time slots for attended home delivery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1022-1041.
    20. Sha Yang & Yuxin Chen & Greg Allenby, 2003. "Bayesian Analysis of Simultaneous Demand and Supply," Quantitative Marketing and Economics (QME), Springer, vol. 1(3), pages 251-275, September.
    21. Michael Lewis & Vishal Singh & Scott Fay, 2006. "An Empirical Study of the Impact of Nonlinear Shipping and Handling Fees on Purchase Incidence and Expenditure Decisions," Marketing Science, INFORMS, vol. 25(1), pages 51-64, 01-02.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhao, Jinjing & Liu, Qing & Lee, Min-Kyu & Qi, Guanqiu & Liu, Yanfeng, 2024. "Consumers’ usage of errand delivery services: The effects of service quality and consumer perception," Journal of Retailing and Consumer Services, Elsevier, vol. 81(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Koch, Sebastian & Klein, Robert, 2020. "Route-based approximate dynamic programming for dynamic pricing in attended home delivery," European Journal of Operational Research, Elsevier, vol. 287(2), pages 633-652.
    2. Jean-François Cordeau & Manuel Iori & Dario Vezzali, 2024. "An updated survey of attended home delivery and service problems with a focus on applications," Annals of Operations Research, Springer, vol. 343(2), pages 885-922, December.
    3. Fleckenstein, David & Klein, Robert & Steinhardt, Claudius, 2023. "Recent advances in integrating demand management and vehicle routing: A methodological review," European Journal of Operational Research, Elsevier, vol. 306(2), pages 499-518.
    4. Fernández-Antolín, Anna & Guevara, C. Angelo & de Lapparent, Matthieu & Bierlaire, Michel, 2016. "Correcting for endogeneity due to omitted attitudes: Empirical assessment of a modified MIS method using RP mode choice data," Journal of choice modelling, Elsevier, vol. 20(C), pages 1-15.
    5. Robert Klein & Michael Neugebauer & Dimitri Ratkovitch & Claudius Steinhardt, 2019. "Differentiated Time Slot Pricing Under Routing Considerations in Attended Home Delivery," Service Science, INFORMS, vol. 53(1), pages 236-255, February.
    6. Strauss, Arne & Gülpınar, Nalan & Zheng, Yijun, 2021. "Dynamic pricing of flexible time slots for attended home delivery," European Journal of Operational Research, Elsevier, vol. 294(3), pages 1022-1041.
    7. van der Hagen, L. & Agatz, N.A.H. & Spliet, R. & Visser, T.R. & Kok, A.L., 2022. "Machine Learning-Based Feasibility Checks for Dynamic Time Slot Management," ERIM Report Series Research in Management ERS-2022-001-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    8. Waßmuth, Katrin & Köhler, Charlotte & Agatz, Niels & Fleischmann, Moritz, 2023. "Demand management for attended home delivery—A literature review," European Journal of Operational Research, Elsevier, vol. 311(3), pages 801-815.
    9. Avraham, Edison & Raviv, Tal, 2021. "The steady-state mobile personnel booking problem," Transportation Research Part B: Methodological, Elsevier, vol. 154(C), pages 266-288.
    10. Robert Klein & Jochen Mackert & Michael Neugebauer & Claudius Steinhardt, 2018. "A model-based approximation of opportunity cost for dynamic pricing in attended home delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(4), pages 969-996, October.
    11. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    12. Yonezawa, Koichi & Richards, Timothy J., 2016. "Competitive Package Size Decisions," Journal of Retailing, Elsevier, vol. 92(4), pages 445-469.
    13. Magdalena A. K. Lang & Catherine Cleophas & Jan Fabian Ehmke, 2021. "Anticipative Dynamic Slotting for Attended Home Deliveries," SN Operations Research Forum, Springer, vol. 2(4), pages 1-39, December.
    14. Bruck, Bruno P. & Cordeau, Jean-François & Iori, Manuel, 2018. "A practical time slot management and routing problem for attended home services," Omega, Elsevier, vol. 81(C), pages 208-219.
    15. Agatz, N.A.H. & Fan, Y. & Stam, D.A., 2020. "Going green: the effect of green labels on delivery time slot choices," ERIM Report Series Research in Management ERS-2020-009-LIS, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    16. Yang, Xinan & Strauss, Arne K., 2017. "An approximate dynamic programming approach to attended home delivery management," European Journal of Operational Research, Elsevier, vol. 263(3), pages 935-945.
    17. Nils Boysen & Stefan Fedtke & Stefan Schwerdfeger, 2021. "Last-mile delivery concepts: a survey from an operational research perspective," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 43(1), pages 1-58, March.
    18. Niels Agatz & Yingjie Fan & Daan Stam, 2021. "The Impact of Green Labels on Time Slot Choice and Operational Sustainability," Production and Operations Management, Production and Operations Management Society, vol. 30(7), pages 2285-2303, July.
    19. Abdollahi, Mohammad & Yang, Xinan & Nasri, Moncef Ilies & Fairbank, Michael, 2023. "Demand management in time-slotted last-mile delivery via dynamic routing with forecast orders," European Journal of Operational Research, Elsevier, vol. 309(2), pages 704-718.
    20. Haider, Zulqarnain & Hu, Yujie & Charkhgard, Hadi & Himmelgreen, David & Kwon, Changhyun, 2022. "Creating grocery delivery hubs for food deserts at local convenience stores via spatial and temporal consolidation," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ormnsc:v:70:y:2024:i:11:p:7559-7578. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.